

Introduction to Chaos, Fractals and

Dynamical Systems

By Phil Laplante, PhD

Introduction to Chaos, Fractals and Dynamical Systems

Phil Laplante, PhD

June 2020

Forward for Reprinted Edition

Originally published as Fractal Mania in 1993, this book included a distribution disk with code samples

and an iron on patch. This was my fourth book and I am still grateful to McGraw-Hill and publisher Roland

Phelps for supporting me when I was still relatively unknown.

When Fractal Mania1 was published, chaos theory and fractals were raging, even influencing popular

literature and movies (e.g. Jurassic Park). Within a few years, however, these ideas largely faded from

public attention. I also eventually lost interest in this line of research.

I had intended the book for self-study or use in appropriate middle or high school courses, but never learned

if there was widespread adoption as such. The sales figures presented to me suggest that the book was

mostly sold one or two copies at a time to individuals. It was successful enough, however, to be translated

and reprinted in Japanese, Hebrew and Standard Chinese. After several printings, and many years,

McGraw-Hill chose not to republish the book. Under the terms of our contract the copyrights reverted back

to me upon request. But I wasn’t sure what to do with the book.

Recent world events have made me reconsider the importance of understanding chaotic systems, second

order effects and the unintended consequences of human actions – topics which were teased. I considered

reconstructing Fractal Mania around those topics and releasing it with a different publisher. Instead, I am

making it available for free.

The book is suitable for homeschooling or as a classroom supplement. Or, it could be used for informal

family study and discussion. I hope adults will find some value in the information contained herein and

their interest in dynamical and chaotic systems piqued for further exploration.

Writing and Code

In retrospect I can see the evolution and improvement in my writing over 30 years. Fractal Mania was

written to reach a pre-College audience and the copy editor made sure that level was enforced, but my own

writing was also less sophisticated then. But I think the writing is quite accessible and understandable to

almost anyone, and that was my intention all along.

While all the code samples in the book are in Pascal, C code equivalents are available from my Website at

https://phil.laplante.io/resources.php. The Pascal code is not offered in electronic form but could easily be

extracted from the PDF file. Use these at your own risk.

Future Editions and Engagement

Depending on the response I get to this version, I may rewrite and expand the book significantly. I welcome

your suggestions for future editions at phil.laplante.io.

1 I never loved this title – it was determined by the publisher.

https://phil.laplante.io/resources.php
mailto:plaplante@psu.edu

I am available for a customized, virtual talk to your company, group, class, etc. on Chaos Theory,

Dynamical Systems and other topics discussed in this book and related items. Contact me for fee structure

and availability at phil.laplante.io.

Other Books

My complete set of published books can be found here:

https://phil.laplante.io/books.php

One particular recommendation is:

Phillip A. Laplante, Technical Writing: A Practical Guide for Scientists, Engineers and Nontechnical

Professionals, Second Edition, CRC Press/Taylor & Francis Publishing, 2019.

Copyright, Disclaimers and Permissions

Copyright for this book is retained by the author. Permission is granted only to download the book in

electronic form. You may make and distribute hard or electronic copies of this text for personal and

classroom use only. No permission is granted to resell or repackage the information contained herein for

any other purpose. No guarantees or warrantees, implied or explicit, whatsoever, are made and the author

will not assume any responsibility for any uses of the information herein. No guarantees or warrantees are

made for any of the code shown in the book or available from the author’s website. All code is intended for

demonstration and entertainment purposes and are not for any commercial or public use. No endorsements

of any product or service are made. Use the information contained in this book at your own risk.

© Copyright 2020, Phil Laplante

mailto:plaplante@psu.edu
https://phil.laplante.io/books.php

To my mother, Edith. Dedication

,L!_cknowledgments ix
':Introduction x

1 What is chaos? What are fractals? 1
Stable/unstable systems 1
What is chaos? 2
What are fractals? 3
How are fractals created? 4

Attracting & escaping points 5
Bifurcation diagrams 6

The Sierpinski triangle 9
Iterated function system transformations 12
Recursive generation of fractals 14

The Cantor set 17
Fractal dimension 18
How are fractals & chaos related? 20
A brief history of fractals & chaos 21

2 ;ouvzdatiovzs of chaos & fractal theor0 23
Complex numbers & functions 23

Plotting complex numbers 24
Arithmetic with complex numbers 24

Functions of complex variables 27
Finding attractors of complex functions 29

Julia sets 29
The Mandelbrot set 35
A note on the images 38
Inverse iteration & boundary scanning methods 38

Three-dimensional fractals 39

3 Chaos & fractals ivz nature 41
Population dynamics 41
Animals 45
Genetics 46
Weather 46
Scenes from nature 47

Trees, leaves, & flowers 47
Clouds 53
Rocks 54
Snowflakes 56
Galaxies 58
Coastlines 58

Fractals in the human body 58
Bronchial growth 59
Neuron growth 59

eontents

Physiological processes 60
Chaos of the mind? 61

L; Simulated fractals & chaos 63
Turbulent flow 63
Structures 64
Computer scene analysis 66
Image compression 66

Problems with fractal compression 67
Economic systems 69
Cellular automata 71

One-dimensional cellular automata 71
Two-dimensional cellular automata 74

-Appendices

;:/ 'Curbo Pascal graphics 77

t3 Program listings 81

C What's on the disk 141

ylossar1:1 145
JjibliogmphiJ 149
~eferences 151
Index 153
About the author 159

74.cknowledgments
I'd like to thank the following individuals for their critical reading of the
manuscript at various stages. However, errors are inevitable, and I take full
responsibility for them.

■ Prof. Kathryn Douglas of Fairleigh Dickinson University.
■ Dr. Charles Giardina of CUNY-Staten Island.
■ Prof. Marvin Goldstein of Fairleigh Dickinson University.
■ Prof. Diane Richton of Fairleigh Dickinson University.
• Prof. Michael Scanlon of Fairleigh Dickinson University.
• Dr. Richard Segers.
■ Dr. Constantine Stivaros of Fairleigh Dickinson University.
■ Dr. Paul Strauss of Fairleigh Dickinson University.

Many thanks to John Cannon of the Fairleigh Dickinson University Academic
Computer Center for his assistance in the generation of the plates, and to my
student, Frank D'Erasmo for generating some of the code, for proofreading,
and for valuable discussions.

Finally, thanks to my wife, Nancy, for her patience and support on this
project.

;tlcknowledgments -

}Vl.athematical
background

9ntroduction
The purpose of this book is to introduce fractals and chaos theory to those
with no more formal mathematical training than basic algebra, geometry, and
perhaps some trigonometry. The emphasis is on natural and human-made
phenomena that can be modeled as fractals and on the applications of
fractals to computer-generated graphics and image compression. Because I
keep the mathematics to a minimum, I rely on intuitive descriptions,
computer-generated graphics, and photographs of natural scenes to make
my points. I also present a brief history of the evolution of fractal and chaos
theory. For those with access to an IBM-compatible personal computer, the
book includes a diskette with executable programs and source code
illustrating most of the concepts described in the text.

I assume that you have a basic knowledge of algebra and geometry. In
particular, you should be familiar with functions of real numbers, and it would
also be helpful if you were familiar with a little trigonometry such as sines
and cosines. However, I develop most of the needed mathematical
background along the way.

Organization While this text is primarily intended for self-study, it could be used to
dt flexibilit~ supplement several courses at the high-school level. For example, this book

could be used to supplement the following courses:

How to use
the programs

on the disk

- 9ntroduction

• Pascal Programming
■ Precalculus
■ Geometry
■ Computer Graphics

The text can also be used in mathematics courses for undergraduates who
are not science majors.

The disk included with this book contains all of the programs described in
the text. These programs were written using Borland's Turbo Pascal 5.5
compiler, and they require an IBM-compatible PC with an Intel 80286 or
superior processor and an EGA or VGA monitor. The code is written to take
advantage of a numeric coprocessor if it's available.

For a quick demonstration of the programs, place the disk in drive a : of your
system (or another appropriate drive), and type:

a:

Hit Enter to make a : the active drive. Then type:

demo

Hit Enter. Now sit back and enjoy the show. Depending on the speed of your
computer, the demonstration could take 5-15 minutes. You can abort the
demo by pressing the Ctrl-Break key combination.

To run the programs, create a directory called "FRACTAL" by entering the
following command from the root directory of your hard disk. (Be sure your
logged drive is the hard disk.)

mkdir FRACTAL

Change directories to this new one by entering the command:

cd fractal

Copy the programs from the enclosed disk by entering the command:

copy a:*.*

In the previous command, a is assumed to be the drive containing the
distribution diskette included with the book. You'll have to be in the
FRACTAL directory to run the programs, unless you want to put the
FRACTAL directory in your path (see your DOS manual for directions). To run
the executable program corresponding to the source of a particular program,
say JULIA1.PAS, simply type:

JULI Al

If you have Turbo Pascal version 5.5 or greater, you can modify the programs
and have even more fun. (The programs might work with older versions of
Turbo Pascal, but the programs were not tested in these environments). In
many cases, especially with the programs that display Julia and Mandelbrot
sets, changing one line will lead to vastly different and fascinating results. I
strongly encourage you to study the programs and play with them.

If you don't have a compatible version of Pascal, or if you have an
incompatible monitor, it should be relatively easy to modify the programs to
run in your particular environment. Furthermore, if you're using another
structured programming language, such as C or Ada, most of these programs
should easily translate. If you program in BASIC, the code should serve as an
easy-to-follow specification so that you can rewrite the routines.

I didn't build extensive error checking into the programs, nor did I try to
make them too clever. I wanted to keep them short but simple enough to
encourage you to look at them critically and modify them as desired. You can
add error checking if you like.

Finally, depending on your computer, many of these programs (especially
those that produce Julia sets) will run very slowly and could possibly take

}Vl.odifying
the programs

:Introduction -

hours to produce the final image. Although I could have optimized these
programs to run faster, the result would have been difficult to follow. I opted
to trade fast performance for code that's clear and readable. Also, indeed, the
slow performance of some of the programs aptly demonstrates the inherent
trade-offs between the memory required to store a pixel image and the time
needed to regenerate that image using compression techniques, which the
fractal programs represent. I encourage you, however, to experiment with the
programs and try to optimize them by taking advantage of symmetry and
mathematical tricks. In doing so, you can gain a better understanding of the
underlying phenomena.

Although I've provided you with code to generate many different kinds of
fractals, a free program is available that will generate many other fractal images.
The program, FRACTINT, was written and is distributed by the STONE SOUP
GROUP. The FRACTINT executable program, documentation, and even source
code are available on CompuServe in the "fractals" library of the COMART
forum. To get more information from CompuServe, call (800) 848-8199.

Disclaim.er I make no guarantees for the performance of the supplied program code on
any given machine.

1:11 9ntroduction

What is chaos?
What are fractals?

"First there was Chaos, the vast immeasurable abyss,
Outrageous as a sea, dark, wasteful, wild."

- John Milton, Paradise Lost (1674)

In this chapter I look at chaos, instability, stability, and other ideas that relate
to fractals . I define the term fractal, show some early examples, and look at
the history of fractals , chaos, and dynamical systems.

Consider the section of infinite roller coaster shown in FIG. 1- lA. The car is
located in the trough and is still. If you shove the car gently in either the front
or the back, it's clear that friction, gravity, and rotational kinetics will act to
return the car to the trough. Within certain limits, it doesn't matter how far
you push the car to the right or the left, the car consistently returns to the
same place. This system is said to be in stable equilibrium.

Now consider the section of the same roller coaster shown in FIG. 1-lB. In this
case, if you gently shove the roller coaster in the front or the back, the car
begins a wild ride, and it's unclear where the car stops. This system is said to
be in unstable equilibrium. The concepts of stable and unstable equilibrium,
as well as sensitivity to initial conditions (in this case where the car starts),
are crucial in the study of fractals and chaos.

Stable/unstable
systems

What is chaos? What are fractals? II

What is chaos?

B Jractal jVlania

(A) (B)

1-1 Two sections of the infinite roller coaster.

Chaos is derived from a Greek verb that means "to gape open, " but in our
society, chaos evokes visions of disorder. In a sense, chaotic systems are in
unstable equilibrium-even the slightest change to the initial conditions of
the system at time t leads the system to a very different outcome at some
arbitrary later time. Such systems are said to have a sensitive dependence on
initial conditions.

Some system models-such as that for the motion of planets within our solar
system-contain many variables, yet still are accurate. With chaotic systems,
however, even when there are hundreds of thousands of variables involved,
no accurate prediction of their behavior can be made.

For example, the weather is known to be a chaotic system. Despite the best
efforts of beleaguered meteorologists to forecast the weather, they very
frequently err. There's a famous anecdote, which you might have heard,
about the movement of a butterfly's wings in Tokyo affecting the weather in
New York. This is typical of a chaotic system and illustrates, apocryphally,
sensitive dependence on initial conditions.

Chaotic systems appear in virtually every aspect of life. Traffic patterns tend
to be chaotic-the errant maneuver of even one car can create an accident or
traffic jam that can affect thousands of others. Many people feel that the
stock market is a chaotic system because the behavior of one investor,

political situation, or corporation can alter prices and supply. Finally, those of
you who enjoy science fiction are familiar with story lines where a time
traveler goes back and alters a course of events, even slightly, with traumatic
consequences. 1 Just as the ripples from a pebble tossed into a lake affect the
farthest shore, our slightest actions can have far-reaching repercussions.2

There's a rigorous and precise definition of a fractal, but that's beyond the
scope of this text. For our purposes, a fractal is an image3 with an infinite
amount of self-similarity.

What is self-similarity? In natural and human-made phenomena, self
similarity means that the structure of the whole is often reflected in every
part. For example, consider a section of coastline photographed from space.
(See FIG. 1-2.) You can see that the view from space is similar to the one from

•••

Space 10 miles 1inch

10 miles away, 1 mile away, 1 foot away, 1 inch away, and so on. This is
exactly the kind of self-similarity that characterizes fractals.

Let's consider another example of self-similarity. Look at the image in FIG.
1-3. Notice that there are several globes. Look closely at them. Can you see
that these globes are just a copy of the larger image? The globes also have a
number of "pimples" on them. If you look at them closely too, you'll see that
they're also a small reproduction of the larger image. If the image in the
figure had an infinite level of detail, you could examine the picture to any
magnification and still find a copy of the larger image.

What are
fractals?

1-2
lncreasing/0 nearer
views of a section
of coastline.

What is chaos? What are fractals? -

1-3
'The Mandelbrot set.

Howare
fractals

created.?

- Jractal }Vlania

Fractals tend to be jagged and irregular. It 's not surprising, then, that they
were named by mathematician Benoit Mandelbrot after the Latin word
fractus, meaning broken.

It's unlikely that you could simply "discover" an image that had the property
of self-similarity. In the two previous examples, the coastline and the
Mandelbrot set, the first was fabricated for illustration (although it could, in
theory exist) and the second was created via a careful mathematical
procedure. How do you find such mathematical procedures?

Before I answer this question, let's explore the place where the fractal lives,
the realm of dynamical systems. The study of dynamical systems is a subfield
of mathematics that's concerned with the repeated application of an
algorithm.

What's an algorithm? An algorithm is simply a recipe or set of rules that
describes some process. A cookbook contains many algorithms for baking
cakes and other goodies. The assembly instructions for a bicycle represent an
algorithm. A computer program is simply an encoded form of an algorithm
and it's these types of algorithms that you see in this book.

Algorithms can be presented in many ways: in words, in flowcharts or other
pictures, in pseudocode, or in mathematical notation. I'll be using combinations
of words and mathematical notations throughout this text to describe the
algorithms needed to generate fractals. These algorithms involve the application
of some function defined on real or complex numbers (to be defined later}, or the
application of some graphical or geometric procedure. I'll show how repeated
application of either type of algorithm can result in a fractal.

Let's begin developing the basic vocabulary needed to describe the
algorithms needed for making fractals. Consider a function f, which is just a
mapping or rule, from the real number line onto itself. Let's denote this:

f:ffi ➔ ffi

X ➔ f(x)

The symbol ffi stands for the real number line, and the arrow, ➔, denotes the
fact that the function f is a rule that relates each real number x with another
real number f (x). At this point you might want to get a calculator and use it
as you read the following discussion.

Consider the function f (x) = x2. If you enter the number 2 and press the "X2"
key, you get 4. Press it again, and you get 16, and so on. This procedure is
called function composition. The composition off (x) with itself is denoted
f (f (x)) and it simply means apply the rule f to value x, then apply the rule f
again to the result. If you compose the result with the function f again,
denoted f(f (f (x)}}, you've performed another iteration of the composition off.
You can continue composing f by itself many times, a procedure called
function iteration. For simple functions, iteration is easily performed with a
calculator.

Continuing with the example, if you compose the X2 function enough times,
your calculator will probably revert to exponential notation and display:

3.4028 E 38

That means 3,4028 times the number 1 followed by 38 zeros. Eventually, your
calculator will give up and display something like

ERROR

That means that the number obtained was too large for your calculator to
hold, even using exponential notation. You can then say that the point 2
iterated under the function f (x} = x 2 escaped, or it tended towards infinity.
Functions that tend toward minus infinity at a point under iteration also
escape.

For example, the point Xo = 2 iterated under the function f (x) = - x2 will tend
towards negative infinity. (Try it on your calculator.) Points that escape under

Attracting dt
escaping points

What is chaos? What are fractals? -

iteration are also sometimes called repelling points or are said to be repelled
under iteration.

Now consider iterating any point that 's larger than O but less than 1, say x0 =
.5 under the function f (x) = x 2• Enter this number into your calculator and
press the "X2" key a few times. You'll notice that the product gets smaller
and smaller. Eventually, the exponential notation will be displayed, but this
time it will have a negative exponent. It might look like:

2 .3283 E - 10

That means that the number is 22.3283 times 0.0000000001. This is a very
small number indeed! If you keep pressing the "X2" key, the ERROR indicator
might be displayed. This doesn 't mean that the point escaped, rather the
number became so close to zero that the calculator could no longer calculate
the function X2 without making an error. In this case, the iterated function
tended towards a single point, 0. You could say that O is an attractor of this
function because the iterated function tended toward this point. If you iterate
this function with a starting value between - 1 and 1 (noninclusive) the
iterated result will always be 0.

Some points act as neither attractors nor repellers under iteration. Such
points are said to be indifferent. You can use your calculator, or write
programs, to determine attracting, repelling, or indifferent points for
functions . For example, try to determine some attracting, repelling,
indifferent points for the following functions:

1. f(x) = x3 -1

2. f(x) = - 2x(2-x)

3. f (x) = sin(x)

4. f (x) = 1/x

5. f (x) = si~(x)

Later on, I'll look at the collection of all attracting points for some iterated
functions or iterated geometric procedures. When the attracting set of an
iterated function or procedures is an infinitely self-similar set (a fractal) then
the attracting set is called a strange attractor.

rJifurcation Let's look at the set of attractors for some functions defined on real numbers.
diagrams Suppose you 're given the simple polynomial function:

f(x) =r + C

- Jractal }Vlania

for some real constant c, and you compose the function with itself many
times. Let's try this by picking some c, say c = - 1.1 and set x = 0. Using a
calculator, you'll see that:

f (0) = 02 - 1.1 = - 1.1

Iterating, you find f (f(O)), that is:

f(f(0)) = f(-1.1) = (-1.1)2 - 1.1 = .11

Now finding f(f (f (0))), you have:

f (f(f(0))) = f(.11) = (.11)2- 1.1 = -1.0879

Applying the rule f to this result again gives:

f(f(f(f(0)))) = (-1.0879)2 = .08

You could continue this indefinitely, but you should see that the result of the
composed functions seem to bounce back and forth between a number
somewhere near - 1.0 and another number near .1. Suppose you compose f
itself many times, say 200, and you do this for a range of values of c, for
functions that look like:

f (x) = x2 + c

A strange and beautiful thing happens.

If you compose this function many times, plotting points after each
composition, and you do this for many values of c, the resulting image is
called a bifurcation diagram, which is shown in FIG. 1-4. The term
"bifurcation" is used because the image divides into two distinct bands of
points. Like a fractal, it's also self-similar.

~

1-4
/3ifurmtion diagram for
f (x) = X2 + c with x = 0
and various values of c
produced using
13 rJ-!A R.PAS.

What is chaos? What are fractals? -

- Jractal }Vlania

To see this, let 's regenerate FIG. 1-4 by running the program BIFUR.PAS. The
program prompts you for a scale. You should enter a "1" in response. The
program will then begin to display the bifurcation diagram as it sweeps
values of c.

Notice the bands of stability (the "bald spots") where the function only takes
on two values instead of infinitely many. The interpretation of these will
become clearer later. Finally, by choosing different scaling factors, you should
see that the bifurcation diagram is self-similar.

BIFUR.PAS is a straightforward program. You choose an appropriate scale
factor based on the user input number sf and the maximum x-coordinate
Ma x X. Some experimentation shows that dividing by a factor of 8 yields a
better picture. The code for the scaling looks like this:

scale : = sf•M axX/8 ; (calculate overall sca l e f actor l

Based on experience, I chose a starting value for c as -2.0. You then sweep
the value of c, adding enough for each increment in the x-axis, so that the
final value of cis .25.

Within the loop, you initialize the value x = 0 and compose the function f = x 2

+ c by itself 200 times. Ignore the first 50 iterations to allow the composition
to stabilize. Then plot the point. The salient code looks like:

C : = -2.0 ;
for i : = 1 to MaxX do

begi n
X : = 0 . 0;
c : = c + 2. 25/ Ma xX ;
for j : = 1 to 200 do
begin

X : = X*X + C ;

(set starting po i nt l

ca l cul ate or bi t about x = 0 l
iterate c l
ca l cul ate or bit afte r 200 it erati ons }

if j > 50 t hen skip fi rst 50 i terat i ons l
begi n

pu t pixel(i, round(MaxY/2 + x•sca l e) , j di v Ma xCo l or) ;
end

end
end

There is one subtlety. You output the pixel with an x-coordinate of i. which
controlled the sweep of c, and a y-coordinate of the composed function
value, suitably scaled and offset to the middle of the screen. To make the
diagram pretty, I picked a different color based on the number of
compositions of the function f that were applied.

Bifurcation diagrams are amazingly simple little fractals that have applications
that you'll see later. You can experiment with BIFUR.PAS by playing with the
function f and the sweep value for c. Be careful, though, because the function
might give you integer overflow problems and "blow up."

Another way to generate fractals is by the repeated application of special
geometric procedures. Such fractals are called iterated function systems (IFS).
A nice two-dimensional fractal that can be generated this way is the
Sierpinski. triangle.

Consider a filled triangle. Suppose you remove a section from the middle so
that the result is three copies of the original at ¼ size, as shown in FIG. 1-5. If
you continue to apply this rule to the three triangles, and then the nine
resulting triangles and so on, you obtain the fractal shown in FIG. 1-6. Let's
look at how the Sierpinski triangle is created with a Pascal program.

1-6
Ii Sierpinski triangle.

'the
Sierpinski
triangle

1-5
Rule for creation of a
Sierpinski triangle.

What is chaos? What are fractals? II

1-7
Sierpinski triangle

mapping procecture.

11:1 Jractal jVlania

The easiest way to generate such a picture is to generate random orbits and
look for attracting points. To do this, you need to encode the graphical
procedures in Pascal, select a random starting point, and apply the rule to it a
fixed number of times. Repeated application of these rules will generate a
strange attractor, that is, a fractal. Program SIERP.PAS on your disk applies
the algorithm that I'll describe.

To make an equilateral Sierpinski triangle, map the random starting point into
one of three randomly chosen rules corresponding to one of the three
triangles in the large triangle with the center removed. Figure 1-7 shows how
to map an arbitrary point into one of three possible sites.

If you aren't already familiar with the Turbo Pascal screen, I suggest that you
review appendix A, or simply note in the following discussion that Turbo
Pascal assigns the coordinate (0,0) to the upper left-hand comer of the
screen.

If the maximum x-coordinate is Ma xX and the maximum y-coordinate is
Max Y, then the large triangle has vertices:

Vi = (0, MaxY)

V2 = (MaxX/2,0)

V3 = (MaxX,MaxY)

It turns out that if the random point is halfway to the outer vertex of one of the
three triangles inside the larger triangle, then the random point is inside one
of them. For the three triangles within it, this is also true, and so on. To find
the halfway points to the outer vertices, use the rules illustrated in FIG. 1-8.

Rule one is:

(x' ,y') = (x/2, (MaxY + y)/2)

That will find the point halfway between point (x, y) and vertex Vi. The
following is rule two:

(x',y') = (MaxY/2 + x,y/2)

V2 (MaxX/2,0)

V1,__ _____ _._ ______ _,

(0, MaxY)

(x,y) 1-8
Vertices for Sierpinski
triangle mapping
procedure.

Use rule two for the point halfway between point (x, y) and vertex v;. Here's
the third rule:

(x' ,y') = ((MaxY + x)/2 + x, (MaxY + y)/2)

The third rule finds the point halfway between point (x, y) and vertex Vj.

If you continually choose one of the three mapping rules and apply it to the
coordinate just mapped, you generate points at finer and finer resolutions
within the Sierpinski triangle.

The main code, which maps points into one of the three inner triangles, and
found in SIERP.PAS is:

1: begin
X = x div 2; { find 1h way point to Vll
y = (MaxY + y) div 2

end:
2: begin

X = (MaxY div 2 + x) div 2; { find½ way point to V2)

y = y div 2
end;

3: begin
X (MaxY + x) div 2; { find½ way point to V3)
y (MaxY + y) div 2

end

Note that you use MaxX = MaxY to ensure that no distortion is introduced
(see appendix A for an explanation). Also note that in the Pascal routine you
use di v 2 instead of / 2 to ensure an integer quotient. Finally, you perform
1000 iterations before plotting to be sure that the fractal has begun attracting.
You can apply the procedure to any triangle-equilateral, right, or otherwise.

What is chaos? What are fractals? Ill

Another fractal that can be constructed in a similar way is a Sierpinski. gasket
or Sierpinski. carpet. To make a Sierpinski carpet, start with a square, divide it
into nine equal-sized squares, and remove the middle one. Proceed with the
remaining eight squares, repeatedly applying the same procedure. You'll see
a Sierpinski carpet shortly.

':Jterated The geometric rules applied to create the Sierpinski triangles and other fractals
~unction can be represented mathematically as a set of operations including sliding,
I' stretching, and rotating. These types of mathematical operations are called

system affine transformations. They can be easily coded using matrix operations.
transformations

Ill Jractal }Vl.ania

A matrix consists of rows and columns that hold numbers. If the matrix
shown is called "d, ", then the number in the first row, first column is denoted
d[1, 1]; in the second row first column it's denoted d[2, 1], and so on. In
general, the number in row i and column j is denoted d[i,j] . Special rules
involving the multiplication and addition of the numbers in the matrix
simplify the description of affine transformations. I won't review matrix rules
here, but I encourage you to pick up a text on linear algebra.

Table 1-1 shows a matrix-encoded form of the rules that generate a Sierpinski
triangle. Here, for example, the d[1,5] position contains the number 25. The
last column has a special meaning in that it determines the chance or
probability that the transformation described in that row will be used. For
example, in the Sierpinski triangle, as in SIERP.PAS, the three
transformations are equally likely.

Table 1-1
IFS transformation rule for the Sierpinski triangle.

1 2 3 4 5 6 probability
1 0.5 0 0 0.5 25 1 0.33

2 0.5 0 0 0.5 1 50 0.33

3 0.5 0 0 0.5 50 50 0.33

Let's look at what the transformations in the rows of the matrix do. Each
transformation maps a point (x,y) into a new point (x' ,y') by handling each
coordinate separately. The transformation in row i obtains a new x

coordinate, x', by transforming the given x-coordinate of the point by the
mapping:

x' = d[i, l]x + d[i, 2]y + d[i, 5]

The transformation in row i transforms the y-coordinate by the rule:

y' = d[i, 3]x + d[i, 4]y + d[i, 6]

In his book Fractals Everywhere (Barnsley 1988), Michael Barnsley gives the
matrix form codes to generate a variety of iterated function system fractals.
(He calls programs used to generate fractals this way the "Chaos Game.") For
example, if you look at SIERP2.PAS file on the distribution disk, you'll see a
program that implements the IFS code to generate a Sierpinski triangle that's
the same as the one we made before.

For example, row one specifies that the following transformations are to be
applied with a probability of 0.33, or one-third of the time:

x' = 0.5x + Oy+ 25

y' =Ox+ 0.5y + 1

If you were to apply these transformations to the point (3,2) you'd get:

x' = 0.5 • 3 + 0 • 2 + 25 = 26.5

y' = 0 •3 + 0.5 ·2 + 1 = 2

Thus, the transformed point is (26.5,2). Try applying the transformations to
this point for four iterations.

You can take advantage of the simplicity of the matrix form of the IFS in
many fractal programs. For instance, in program SIERP2.PAS, the code that
holds the matrix data is:

initialize IFS data array l

d[l,1]: = 0.5; d[l,2]: = 0: d[l,3]: = 0: d[l,4]: = 0 . 5; d[l,5]: = 25: d[l,6]: = 1:
d[2,1]: = 0.5; d[2,2]: = 0: d[2,3]: = 0: d[2,4]: = 0.5; d[2,5J: = 1: d[2,6J: = 50 :
d[3,1J: = 0.5; d[3,2J: = 0: d[3,3J: = 0: d[3,4J: = 0.5; d[3,5]: = 50; d[3,6J: = 50:

The code to pick one of the three rows that hold the transformation and apply
it is:

k = random(3) + 1: pick random row l
x : = d[k,l]*x + d[k,2]*y + d[k,5]: { transform coordinates
y: = d[k,3]*x + d[k,4]*y + d[k,6];

Isn't this code much more compact than that in SIERP.PAS? This code is also
quite fast-much faster than the code that you'll see in the next chapter.
Finally, it's an amazing fact that by simply changing the data in the IFS code
table, you can generate vastly different fractal images.

For example, to make the Sierpinski carpet, simply change the data matrix in
program SIERP2.PAS to that shown in TABLE 1-2.

What is chaos? What are fractals? m

Table 1-2
IFS transformation rule for the Sierpinski carpet.

1 2 3 4 5 6 probability

1 0.33 0 0 0.33 1 1 0.125

2 0.33 0 0 0.33 MaxY 1 0.125

3 0.33 0 0 0.33 1 MaxY 0.125

4 0.33 0 0 0.33 MaxY MaxY 0.125

5 0.33 0 0 0.33 MaxY/2 1 0.125

6 0.33 0 0 0.33 MaxY MaxY/2 0.125

7 0.33 0 0 0.33 1 MaxY/2 0.125

8 0.33 0 0 0.33 MaxY/2 MaxY 0.125

This was done in program CARPET.PAS, which displays the Sierpinski carpet
shown in FIG. 1-9. In this case, the new data IFS array is:

d[l,1]: = 0.33; d[l,2]: = 0; d[l,3]: = 0; d[l,4]: = 0.33; d[l,5]: = 1; d[l,6]: = l;
d[2,l]: = 0.33; d[2,2]: = 0; d[2,3]: = 0; d[2,4J: = 0.33; d[2,5J: = MaxY; d[2,6]: = 1;
d[3,1J: = 0.33; d[3,2]: = 0; d[3,3J: = 0; d[3,4]: = 0.33; d[3,5]: = l; d[3,6]: = MaxY;
d[4,1J: = 0.33; d[4,2J: = 0: d[4,3]: = 0; d[4,4]: = 0.33; d[4,5]: = MaxY; d[4,6]: = MaxY;
d[5,1] : = 0.33; d[5,2] : = 0; d[5,3]: = 0; d[5,4]: = 0.33; d[5,5]: = MaxY div 2; d[5,6J: = 1;
d[6,1]: = 0.33; d[6,2]: = 0; d[6,3J: = 0; d[6,4]: = 0.33; d[6,5]: = MaxY; d[6,6]: = MaxY div 2;
d[7,1]: = 0.33; d[7,2]: = 0; d[7,3]: = 0; d[7,4]: = 0.33; d[7,5]: = l; d[7,6]: = MaxY div 2;
d[S,1]: = 0.33; d[S,2]: = 0; d[S,3]: = 0; d[S,4]: = 0.33; d[S,5]: = MaxY div 2; d[S,6]: = MaxY;

necursive
generation
of fractals

Ill Jractal)Vlania

The code to pick the random row is:

k : = random(S) + l; pick random row}
x : = d[k,l]•x + d[k,2J•y + d[k,5]; { transform coordinates
y : = d[k,3J•x + d[k,4]•y + d[k,6];

You can experiment with SIERP2.PAS, CARPET.PAS, or the other programs
using the IFS data algorithm that you'll see later. Experimenting can produce
some amazing results, and you'll see several of these in chapters 3 and 4.

Most fractals are generated by applying a certain procedure infinitely (or at
least a very large, albeit finite number of times). I generated the first fractal,
the bifurcation diagram, by repeated iteration of a function. In the last two
fractals, I iterated random functions by applying repeated geometric
procedures. Another way to apply geometric procedures, however, is by

coding them so that they're self-referential, or recursive. A quote from
Jonathan Swift4 captures the spirit of recursion:

"So, naturalists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller fleas to bite'em,
And so proceed ad infinitum.
Thus every poet, in his kind
Is bit by him that comes behind."

In mathematics, self-reference usually implies recursion in the sense that a
function is defined in terms of itself. For example, consider the numbers in
the famous Fibonacci sequence. Let the f(O) = 0 and let f (1) = 1 be the first
two numbers in the sequence. Then the nth number in the sequence f(n) is
given by:

f (n) = f (n - 1) + f (n - 2)

1-9
Sierpinski carpet.

What is chaos? What are fractals? Ill

1111 Jractal)Vlania

The nth number in the sequence is just the sum of its two predecessors. Then
the first few numbers in the sequence are:

01 1 2358 ...

What would the twenty-third number in the sequence, denoted /(23) be?
Well, you say, it's just /(22) + /(21). However, what are these? You'd have to
perform a large number of calculations to find f (23) this way. It 's an amazing
fact , and part of the allure of mathematics, that you can find an algebraic
solution for f (23) or f (n) in general. For the Fibonacci sequence, with n ~ 0:

f (n) = 1 (1 +2 v'5 r -1 (1 -2 v'5 r
So, if you plug n = 23 into the formula, you get:

f (23) = 28657

Just for fun, try to find f (22) and f (21) using this formula, then show that:

f (23) = f (22) + !(21)

In computer science, certain programming languages, such as Pascal,
support recursion in the sense that procedures can call themselves. For
example, consider the program FIB.PAS, which finds the nth number in the
Fibonacci sequence. It makes use of the self-referential function, fi bo, given
in the following:

function fibo(i : in t eger) : i nteger;
{ a recurs i ve fun ct io n l
begin

if i = 0 then
f i bo : = 0

else
i f i = 1 then

fibo : = 1
el se

fibo : = f i bo(i - 1) + fibo(i - 2)

end;

Notice how the function calls to itself. You should study the program and try
running it with any number between O and 23 (any other numbers will cause
overflow problems). You'll be seeing other recursive programs later in this book.

Recursion and self-reference can be found in visual art as well. For example,
the work of celebrated artist M. C. Escher demonstrates an incredible insight
into these concepts. For example, in the work Fish and Scales (woodcut,
1959), the scales of the fish are themselves fish at many levels. Also, in
Escher's Circle Limit I (woodcut, 1958) and Circle Limit II (woodcut 1959), a
high degree of self-reference is present. To see these and other beautiful
Escher works, and read his own insightful narrative, see "Escher on Escher:

Exploring the Infinite." (Abrams 1989). To learn more about recursion in
mathematics, music, art, and life, read Godel, Escher, Bach: An Etemal
Golden Braid, the Pulitzer Prize winning book by Douglas Hofstadter.
(Hofstadter 1989).

To illustrate mathematical recursion again, let's look at the fractal created 'Che Cantor set
when we recursively apply the following procedure to a section of the real line.

remove the middle third of the real line, then remove the middle third of the
remaining line segments, and so on.

This procedure, called the Cantor middle third argument, was introduced by
mathematician Georg Cantor in the late nineteenth century and has a very
powerful result. The effect of applying the procedure an infinite number of
times is illustrated in FIG. 1-10. The resulting figure is sometimes called the
Cantor set, and it's a fractal in one-dimensional Euclidian space. If you look
at it closely, you should see that there are infinite levels of self-similarity.

When you perform the Cantor procedure an infinite number of times, a very
strange thing happens-you never completely eliminate the line. In fact,
there will be an infinite number of minuscule line segments. Yet, if you strung
them all together, their length would be zero!

If you have trouble believing the first part of the previous statement,
suppose I placed you at the end of a room that was exactly 20 feet long. I
then ask you to halve your current distance to the other side of the room,
and to repeat this procedure. Your distance in feet from the opposite wall
would then be:

10 5 2.5 1.25 .625 ...

However, would you ever reach the other wall? The answer is no! Although
you can get arbitrarily close to the wall, you can never actually arrive at it
using the procedure outlined. The effect is similar when you apply the Cantor
procedure. You never completely annihilate the line5•

You'll find the program CANTOR.PAS on your disk, which applies the Cantor
procedure recursively to a line segment on the screen. The heart of the code
for generating the Cantor set is a recursive procedure called Canto r. Let's
look at the code in Cantor.

1-10
Co11structio11 of the
Cantor set.

What is chaos? What are fractals? Ill

Jractal
dimension

Ill '3ractal }Vlania

be gin
line(xl, yl, x2, yl);
yl : = yl + 16; {increment y-coo rdinate }
if yl < = 128 then (don't do to fa r }
begin
delta : = (x2 - xl) di v 3; (cal culate th ird of li ne segment}
Cantor (x l, yl, xl + delta. yl) ; {draw fir st third }
Cantor(x 2 - delta, yl, x2, yl) ; {draw third th i rd }
end;

end ;

Suppose that the starting line segment has the left-end point coordinate
(x 1 . y 1) . Then, if the line is level, it has the right-end point at (x 2 . y 1) . The
first line of the program invokes the graphics procedure l i n e, which draws a
line between these points.

You then calculate one-third of the distance between these points, which is
done by the statement:

delta : = (x2 - xl) div 3

The d i v operator ensures that the result of the division will be an integer and
not a floating point number, which Pascal will not allow here.

You add 16 pixels to they-coordinate to move the next iteration down, and
then perform procedure Canto r on the third of a line segment starting at
point C x 1 . y 1) and ending at C x 1 + de l ta . y 1) . You do the same on the
other third of the line segment, starting from the point at (x 2 - de l ta .
y 1) and ending at the point C x 2 . y 1) .

The following code ensures that you don't perform recursion too far down the
y-axis (no more than 128 pixels from the top).

if yl < = 128 then

That 's all there is to it. You should run the CANTOR program yourself and
see that it works.

Repeated application of different geometric rules can generate other fractals.
Although recursive geometric rules can be performed by an IFS system,
which is easier to code, finding the IFS codes that are equivalent to the
recursive geometric procedure is often quite difficult.

Suppose you were given a piece of tinfoil with a thickness of exactly zero.
You could say that the foil has a Euclidian dimension of two; that is, it 's two
dimensional (the Cartesian plane is two-dimensional). Suppose now that you
took that piece of foil and crumpled it into a ball. Although the ball now exists
in three-dimensional space, it's not quite three-dimensional because it really
is not a solid (remember the foil has zero thickness) and can't be described
precisely using Euclidian geometry. You would then say that the ball has a
fractional or fractal dimension.

As you might expect, fractal images also have a fractal dimension. Consider,
for example, the Cantor set. Normally, a line (with thickness of zero) is said to
have a dimension of one (it's one-dimensional). However, the Cantor set is
not quite a line, but rather a collection of an infinite number of disconnected
line segments. What, then, is the fractal dimension of the Cantor set?

Consider next the Sierpinski triangle or Sierpinski carpet. Both appear to be
two-dimensional, but because they aren't filled, their fractal dimension
should be somewhat less than two. What, then, are their fractal dimensions?

There are precise answers to these questions, which are far beyond the scope
of this text and most undergraduate mathematics courses. However, using
an approximate technique, you can get a feel for the fractal dimension of
some of the images described in this text. To do this, however, I need to
introduce the concept of logarithms and exponentials.

First, recall the notation:

(1.1)

You multiply x by itself ytimes, where yis said to be the exponent!' and xis
the base. You say this as "x raised to the power y." For example:

Now suppose you're given xYthe number x, and you want to find the number
y. To do this, you apply a special operation called the base x logarithm to
xY (x>0). The result will be yand is denoted:

(1.2)

From the previous example, you can see that:

logi64) = 3

So, how do you use logarithms to find fractal dimension? It turns out that a
good approximation of fractal dimension Dis:

D = log10(number of pieces)/log10(magnification)

That uses the logarithm.

To describe the formula for Din words:

To find the fractal dimension, count the number of self-similar pieces,
take the logarithm to the base 10, and divide by the base 10 logarithm of
the magnification, where the amount of magnification is the amount of
"closeness" needed to get the original image back.

What is chaos? What are fractals? 1111

Howare
fractals
&chaos
related?

El Jractal }Vlania

For example, consider a solid line. At magnification n, you divide the line into
n equal or self-similar pieces of length 1/n. Thus, the solid line has fractal
dimension:

D = log10(n)llog10(n) = 1

Now, look at the Cantor set. Since it was produced by removing the middle
third from a line, a magnification by three yields two self-similar pieces.
Using a calculator, you can then find the fractal dimension to be:

D = log10(2)/log10(3) = 0.63 ...

Next consider a square on a two-dimensional plane. At magnification n, the
square is divided into n2 self-similar squares, so it has fractal dimension:

D = log10(n2)/log10(n) = 2

(To verify this, pick any number, n > 1, plug it into the preceding formula, and
work it out on a calculator.) However, for the Sierpinski triangle, any
magnification by two yields three self-similar pieces, so it has fractal
dimension:

D = log10(3)/log10(2) = 1.58 ...

There's an intricate and often subtle relationship between fractals and chaos.
One way of interpreting their relationship is to note that fractals are
generated by detecting attractors and repellers. Thus, they represent, in a
sense, a visual representation of chaotic behavior. You can create black-and
white fractal images by plotting points on the real line or Cartesian plane
(attractors (stable points) in one color, repellers (chaotic points) in another
color). By keeping track of the "speed" at which attractors attract and
repellers repel, and by plotting bands of these rates in different colors, you
can generate elegant fractals in color.

In addition, fractals are chaotic in that they're very sensitive to changes in
initial conditions. For example, you'll see that if you change the function to
be iterated even slightly, this results in a vastly different fractal image output.
This sensitive dependence on initial conditions is a theme that unites
unstable systems, fractals, and chaos.

Another way to see the relationship between fractals and chaos is to study
cellular automata, a special mathematical abstraction from dynamical
systems. Cellular automata can be stable or chaotic, and many generate
fractals. I discuss cellular automata in chapter 4.

It would be impossible to trace the pedigree of fractals or chaos precisely. To
begin, you would have to study dynamical systems, nonlinear mathematics,
functional analysis, and so forth. Listing the names of those who have
contributed, at least in part, to the theory of dynamical systems is like
reading a "Who's Who of Mathematics."

However, although the early threads of fractals and chaos theory are old, the
science itself is very new. For example, shortly after World War I (1919)
Gaston Julia began work on what would later be called attractive cycles of
complex functions, but for the next fifty years most of his work lay dormant.

Much of the work on dynamical systems and cellular automata can trace its
heritage to the great mathematician (and leading figure in the development
of the digital computer), John van Neumann in the 1940s and 1950s. Also, in
the early 1960s Edward Lorenz studied chaotic phenomena in weather.

However, it wasn't until Mandelbrot came along that natural and human
made phenomena were associated with self-similarity in such a clear way. In
the last thirty years since Mandelbrot's first publications, scientists in diverse
fields have linked fractals and chaos to their work. Since the 1970s many
scientists like Michael Barnsley have extended the work of Julia, Mandelbrot,
Lorenz, and others. For a complete treatise on the history of chaos and
fractals, see James Gleick's book (Gleick 1987).

,4 brief histor!I
of fractals dt
chaos

What is chaos? What are fractals? -

Joundations of
chaos di fractal
t heory

"From Nature's chain whatever link you strike,
Tenth, or ten thousandth, breaks the chain alike."

-Alexander Pope, Essay on Man (1733)

In this chapter I introduce the mathematical background that's needed to
generate some of the more breathtaking fractal images. Don't be intimidated
if you've never seen this material before. Most of the mathematics involves
simple variations on algebraic concepts covered in high school. If you aren't
comfortable with the mathematics, simply skip the formulas now, and, if you
like, come back to them later. However, the formulas do help unlock some of
the mysterious beauty of the fractal images, and the formulas are worth the
effort to master. Finally, all of the complex operations described here have
been coded for you, and you can find them in the Pascal unit COMPLEX.PAS
on the disk that comes with this book. Looking at the code might help you
understand the mathematics.

Consider the mapping signified by the symbol V, which is generally called
the "principal square root." This mapping represents the inverse of the
function f (x) = x2 defined on the real line. For positive numbers and 0, this is
well defined. However, for negative numbers, it's undefined. For example,
what is v'=5? What number multiplied by itself yields -5?

Complex
numbers
& functions

Joundations of chaos di fractal theory El

Plotting
complex numbers

Arithmetic with
complex numbers

- Jractal)Vlania

To get around this problem, mathematicians1 have defined the abstract
notion of the square root of -1, denoted i. That is:

You should realize that i is only the positive square root of -1, and that a
negative square root, say k = -i exists as well, since:

However, right now, you're only interested in the positive square root.

Notice how i takes care of the square root of all negative numbers, since, for
example:

Y-4=~ = V4 • i = 2i

Suppose now that you have a number, z of the following format:

Z= a+ bi

The z is called a complex number where a is called the real part and bis
called the imaginary part. For example:

4 + 5i, -3.12 + .Oli, 0 + 9i, 2.7 + Oi

All of those are complex numbers. Complex variables (placeholders for
complex numbers) are usually denoted with some variation of the letter z. For
example, z1, z2, and so on.

A complex number can be plotted as a point on the Cartesian plane by letting
the real part represent the x-coordinate and the imaginary part represent the
y-coordinate. For example, consider the complex numbers z1 = -1 + 2i, z2 =
1.2 - 3i, z3 = -2.1 - .1i, and z4 = .5 + .5i. These are plotted on a Cartesian
plane, except that the y axis is labeled as the "iy" axis, as shown in FIG. 2-1.
This map is called the complex plane, and it's where complex numbers
"live." Functions of complex numbers, which you'll see shortly, can also be
plotted on the complex plane.

Complex numbers can be added, subtracted, multiplied, and divided.
Addition and subtraction are the easiest to perform-simply add or subtract
the respective real and imaginary parts of the numbers. Officially, let z1 = a1 +
b1i, and z2 = a2 + b2i be any complex numbers. Then for addition:

For subtraction:

Imaginary t = iy

Real Z = X

2-1
The complex plane and
some points on it.

For example, let z1 = 4.1 + 3. li and z2 = -1 + . li, then:

Z1 + Zz = 4.1 + (-1) + (3.1 + .l)i

=3.1+3.2i

and

Z1 - Zz = 4.1 - (-1) + (3.1 - . l)i

= 5.1 + 3.0i

The following Pascal procedures, found in file COMPLEX.PAS, will perform
addition and subtraction of two complex numbers. To find z3 = zl + z2 use:

procedure ad d (x l, y l, x2 , y2 : real ; var x3 . y3 : real) ;
begin

x3 = xl + x2 ;
y3 : = yl + y2

end ;

For z3 = zl - z2 use:

procedure sub(x l, yl, x2 , y2 re al; va r x3 , y3 r e al) ;
begin

x3 : = xl - x2 ;
y3 := yl - y2

end;

In both procedures, the real and imaginary parts of z 1, z 2, and z 3 are x 1,
y l, x2, and x3 , y 3 respectively.

Joundations of chaos di fractal theory -

El Jractal Jvtania

Notice how the procedures accept the input of two complex numbers by the
real and imaginary parts separately, and the procedures also output the
complex sum of these numbers in terms of the real and imaginary parts.

Multiplication and division of complex numbers is just a bit trickier. Let 's
consider multiplication first. Let z1 = 81 + b1i and z2 = 82 + b2i, then by
multiplication using the FOIL method (first, inner, outer, and last products)
and simplifying:

For example, let z1 = 4.1 + 3.1i and z2 = - 1 + .1i, then:

Z1 • Zz=--4.41-2.69i

The following Pascal code, found in COMPLEX.PAS, will perform
multiplication of two complex numbers. The input and output to the
procedure is in the same manner as for the addition and subtraction
procedures.

proced ure mult(xl, y l, x2 , y2 : real ; var x3 , y3: real);
begin

x3 := x l •x2 - yl•y2 ;
y3 := y l•x2 + xl •y2

end;

The real and imaginary parts of z 1, z 2, and z 3 are x 1, y 1, x 2, y 2, and x 3,
y 3 respectively.

Next let's consider division. Let z1 = 81 + b1i and z2 = 82 + b2i, then:

It 's not known how to do this division directly. To put the ratio in a form that
you can handle, multiply numerator and denominator by 82 - bzi. This is like
multiplying it by 1, which doesn't change the equality2. You then get:

(81 + b1i) (82 - b2i) (8182 + b1b2) + (82b1 - 81b21i

(8282 - b 2b 2) + (82b 2 - 82b 2)i

(8182 + b1b2) + (82b1 - 81b2)i = ----------
8 2 + b 2

2 2

(8182 + b1b2) (82b1 - 81b 2) .
= ----+----]

8 2 + b 2 8 2 + b 2
2 2 2 2

Now you've expressed the ratio in terms of the real number division of the
real and complex parts.

For example, let z1 = 4.1 + 3.1i and z2 = -1 + .1i, then:

~ = 3.79- 3.51i
Zz (-1)2 + (1)2

-3.79 3.51 .
=-----]

1.01 1.01

= -3.752 - 3.475i

The following Pascal code, found in file COMPLEX.PAS, will perform division
Z1

of two complex numbers where z3 = 2 2 . The input and output to the

procedure is in the same manner as for the addition and subtraction
procedures.

procedure cdiv(xl, yl . x2, y2 : real; var x3, y3 : real) ;
var

denom
begin

denom
x3
y3 :=

end;

real ;

:= x2•x2 + y2•y2;
(xl•x2 + yl•y2)/ denom ;
(x2•y, - xl•y2)/ denom

{ denominator }

real part
imaginary part

Again, the real and imaginary parts of z 1, z 2, and z 3 are x 1, y 1, x 2, y 2, and
x3, y3 respectively.

In order to generate some really interesting-looking fractals, you need more
than just addition, subtraction, multiplication, and division.3 You need more
powerful functions of both real and complex numbers.

The first of these more powerful functions are two simple functions of real
variables: the hyperbolic sine and hyperbolic cosine, denoted cash and sinh
respectively and defined as follows4:

e' + e-x
cosh(x) = 2 (2.1)

e' - e-x
sinh(x) = 2 (2.2)

The two following Pascal procedures generate the hyperbolic cosine and sine
respectively:

function cos h (x : real) : real ;
begin

cosh : = (exp(x) + exp(-x))/2 . 0
end;

{ calculates cosh(x) }

Junctions of
complex
variables

Joundations of chaos di fractal theorf1 El

1111 Jractal }Vlania

function si nh(x : real) : real;
begin

sin h : = (exp(x) - exp(-x))/2 . 0
end ;

{ calculates sinh(x))

Using the hyperbolic cosine and sine, along with the cosine and sine function
of real numbers, you can define the cosine and sine of a complex number z,
denoted cos(z) and sin(z) respectively, as follows :

cos(z) cos(x + iy) cos(x) cosh(y) - isin(x) sinh(y)

s in (z) sin(x + iy) sin(x) cosh(y) - icos(x) sinh(y)

(2.3)

(2.4)

Procedures for these operations in Pascal are found in COMPLEX.PAS and
are shown in the following, where the returned values x 1 and y 1 are the real
and imaginary parts of the answers respectively. For example, to compute
the complex cosine:

procedure ccos(x , y : real;
begin

xl
yl

end :

cos(x)•cosh(y):
- s in (x) •sin h (y l

To compute the complex sine:

var xl, yl : real);

procedure csin(x, y : real; var xl, yl real);
begin
xl sin(x)•cosh(y) ;
yl : cos(x)•sinh(y)

end ;

You need a way of finding the exponential of a complex number. First note
that Euler's equation5 relates the exponential to the sine and cosine:

eix = cos(x) + isin(x) (2.5)

Then, to calculate the exponential of a complex number, use the equation:

ez = ex+iy = e'. eiy = e•(cosy + isiny)

The distributive laws for multiplication over addition yields:

ex+iy = e'cosy + ie'siny

A Pascal procedure to find this exponential, which is found in the
COMPEX.PAS file, is:

procedure cexp(x, y : real;
begin

xl
yl

end;

exp(x)•cos(y);
exp(x)•sin(y)

var xl, yl: real);

(2.6)

The real part of the answer is returned as x 1, and y 1 is the imaginary part of
the answer.

Finally, it 's interesting to note that, from Euler's equation, it's possible to
show that the sine and cosine functions of a real number can be defined
solely in terms of exponentials, namely:

e ix + e -lx

cos(x) = 2

and

. e ix _ e -ix

sm(x) = 2i

For practice, you might want to try to prove this .

(2.7)

(2.8)

In this section, you'll see some beautiful fractals that you can generate by
finding the attracting (or escaping) points of iterated complex functions. It's a
fascinating characteristic of chaotic systems that you can generate vastly
different fractals by a slight alteration of the iterated complex function.

The Julia set of a complex function f (z) is the boundary of the set of points
that escape; points in the Julia set don 't themselves escape, but points
arbitrarily close by do. You couldn't possibly determine these points without
infinite computer power. Instead, you can find the points that themselves
escape and assume that the points that don 't escape are arbitrarily close by.

There are three basic techniques for finding Julia sets of complex functions .
The first is by computing escaping orbits. The second is called the Inverse
Iteration Method (IIM), and the third is called the Boundary Scanning Method
(BSM). The two latter ones are superior to first , but the first is easier to code
and understand, so I use it throughout the text.

To find escaping orbits, you iterate the function f (z) at each point on a
portion of the complex plane centered at (0, 0) . You iterate the function until
either the point attracts or escapes (indifferent points are treated as
escaping) .

However, finding escaping and attracting points for complex valued
functions is a little more difficult than for real valued functions . You can't test
complex valued functions to see if they 're less than infinity (and greater than
minus infinity) because they have an imaginary part. Instead, you need to
find the modulus of the complex function at each iteration.

3inding
attractors of
complex
functions
'Julia. sets

Joundations of chaos &. fractal theory m

Ill Jractal }Vlania

The modulus of a complex number z is equal to the square root of the sum of
the squares of its real and imaginary parts (remember the Pythagorean
theorem?). If z = a+ ib, then its modulus, denoted I z I is:

For example, let z = 3 + 4i, then:

lzl =-V32 +42 =V25=5

(2.9)

Now let's define attraction and repulsion of complex valued functions . A
function f (z) iterated at the point z0 attracts if the square of its modulus
(that's the sum of the squares of its real and complex parts) at any point in
the iteration is less than some threshold, which is called the attractor
sensitivity. The threshold is generally set to be much less than 1. In some
cases, minor variations in the attractor sensitivity can result in wild variations
in the image produced.

If a function is iterated at a point, and after a certain number of iterations it
has not attracted, or if its modulus exceeds some number, then the point has
escaped. The number of times that a function is iterated before you decide
that it has escaped depends on a couple of factors . First, if the modulus of the
iterated function is less then the sensitivity, then the point attracts. If the
modulus is less than 100, and the number of iterations is less than the
maximum, continue iterating. Finally, if the modulus of the iterated function
exceeds 100 or doesn't attract after the maximum allowed iterations, the
point is considered as escaping6. The maximum number of iterations is
actually controlled by the number of allowable colors your screen can display.
Most EGA and VGA screens can display 16, and you can use twice this as
the maximum number of iterations. If you have a screen capable of displaying
256 colors or more, beware. Many of these programs will then take hours to
run. You might want to change the variable Ma x Col or to 16 in this case by
changing the line:

MaxColor : = GetMaxColor;

to:

MaxColor := 16;

If you have a very fast computer, however, and you want to leave the code
unchanged, you'll be rewarded with images that are incredibly beautiful.

You can start by running some of the programs and generating Julia sets for
yourself. Begin by generating the Julia set for f (z)=cos(z) contained in
program JULIAl.PAS. Run the program by typing JULIAl at the DOS prompt.
The lovely output is shown in FIG. 2-2. Let's talk about how the program
works.

First, you'll notice two constants defined in the beginning of the program:

zoom= 2.0;
attract= 0.0001;

{ create 4 by 4 window }
{ attractor sensitivity l

Described fully in appendix A, the first constant establishes a window of the
complex plane to be displayed. In this example, both the real and imaginary
axis of the complex plane will range from -2 to 2, giving a window of width
and height of four units (see FIG. 2-3). The second parameter sets the attractor
sensitivity. In this case, an iterated function is assumed to attract at a point if,
after a suitable number of iterations (MaxCo lo r * 2), the square of the
modulus of the number (x*x + Y*Y) is less than 0.0001.

You can play with the attractor sensitivity and zoom factor to obtain different
effects. The program, however, does take a long time to run. To see why,
consider an ordinary VGA screen with 640 x 480 pixels and 16 colors. Then:

640 • 480 = 307200

2-2
']ulia set for f (z) = cos(z).

Joundations of chaos di fractal theory Ill

2-3
The plotting window for

'Julia and Mandelbrot
programs.

lfl Jractal }Vl.ania

(-2,2) __________________ (2,2)

1-------------(0,0)---------1

(-2,-2} (2,-2}

That's how many pixels are on the screen. Since there are 16 colors, you'll
have to iterate at each point as many as 32 times. That's 307,200 pixels times
32 iterations, which is 9,830,400 total iterations. Each iteration requires the
calculation of a complex sine, which on many PCs takes about a thousandth
of a second. The total calculation time is about 9,830 seconds or 2.73 hours!.
The actual time is probably better; this analysis was a worst-case one and
assumed that all points had to be iterated 32 times, whereas many will attract
(or escape) before then. Furthermore, if you have a coprocessor, the code will
be at least 50 percent faster. On the other hand, if you have a high-quality
screen with many more pixels, the program might take many more hours to
run. If this is the case, try using larger zoom factors or modifying the attractor
sensitivity so that it's closer to unity.

You can generate many other interesting Julia sets with only modest variation
of the iterated function f (z). For example, F1G. 2-4 shows what's known as
Duoady's rabbit. It's generated by finding the Julia set of the function:

f (z) = z2 + -0.122 + 0.745i

You can generate Duoady's rabbit by running the program RABBIT.PAS, and
the "Siegel disk," shown in F1G. 2-5, is a Julia set generated by running the
program SIEGEL.PAS. Examine the file to determine which complex function
is being iterated in this program.

Next, you can create the dragon-like image shown in FIG. 2-6 by finding the
Julia set of:

f (z) = z2 + 0.360284 + 0.100376i

2-4
Douacft/s rabbit.

2-5
11 ']u/ia set genemtecf blj
running the program
SIE(;ELPl15.

Joundations of chaos di fractal theory Ill

2-6
Ii dragon.

Ill Jractal)Vlania

You can generate this image by running the program DRAGON.PAS.

Notice how just a slight change in the complex constant being added to the
function z- dramatically changes the image.

Finally, let's look at the Julia set off (z) = sin(z). Its image looks like Christmas
ornaments and is shown in FIG. 2-7. The image was generated by the program
JULIA2.PAS. Because many iterations of the complex sine are being
evaluated, this image takes several hours to generate on most home
computers.

Incidentally, for fun you should try modifying program JULIAl.PAS to find the
Julia sets of the following functions:

1. f (z) = 1tie2

2. I (z) = (1 + 0.1i)sinz

3. f(z) = 2.965cosz

Be sure to use the complex functions found in the Turbo Pascal unit
COMPLEX.PAS.

A different kind of fractal that can be generated by finding escaping and
attracting points of a complex function is the Mandelbrot set. A Mandelbrot
set is the set of complex constants q for which the orbits7 of the function
f (z)={J(.z)+cj, evaluated at the initial condition of z0 = 0, do not escape. You
might have noticed that the Mandelbrot set is somewhat similar to a Julia
set, but it's not exactly a graph in the complex plane. Rather, it's a graph of
the parameter space determined by the c j, where the real part of q is plotted
on the x-axis , and the imaginary part is plotted on the y-axis.

Normally, the Mandelbrot set is the set of points whose orbits do not escape
for the function:

f(z) = z2 + C; (2.11)

In this case, g(_z) = z2 in equation 2.10. However, the "Mandelbrot set," which
is named after its discoverer, Benoit Mandelbrot, can be found for other
functions of z.

2-7
'Che 'Julia set o/sin(z).

'the
}Vlandelbrot set

Joundations of chaos di fractal theory IJI

2-8
fl. filled Mandelbrot set.

- Jractal }Vlania

To write a program that generates Mandelbrot sets, you only have to modify
the JULIAl.PAS slightly. Whereas with Julia sets you sweep the value of z
over some range, here you fix z = 0 and sweep the complex constant c. You
then check for attracting points and color-escaping points in a similar
manner. Let's look at the program that does this, MANDEL.PAS.

In the program, you color the attracting points blue, but you don 't color the
escaping points. The pertinent code is:

begin
while (i ter < 30) and (mag< escape) do
begin

mul t(x,y,x ,y , x ,y) ;
ad d(x ,y , cx , cy , x,y) ;
mag : = x•x+y•y ;
it er = i ter + l;

en d;

squa re z }
add c }
ca l culate sq uare of modulus }
i ncremen t counter }

i f mag < esca pe t hen output blue for non-escapees}
putpi xe l (i , j, BLUE)

end whil e l oop }

Notice how you test the square of the modulus, variable mag, to see if it's less
than the escape threshold. If it is, then the point attracts , and you output a
blue pixel at the point. Otherwise, you keep iterating the function up to 30
times. The result, called the filled Mandelbrot set because it uses only one
color, is shown in FIG. 2-8.

..

If. however. you color the escaping points in terms of the number of iterations
it takes them to escape, and you don't color the attracting points, as in
program MANDEL2.PAS, then you get the beautiful and well-known image
of FIG. 2-9, which is generally called "the Mandelbrot set." An important piece
of code in MANDEL2.PAS looks like:

while (iter < MaxColor • 2) and (mag< escape) do
begin

mult(x,y,x,y,x,y);
add(x,y,cx.cy,x,y);
mag : = x•x+y•y;
iter = iter + 1:

end;
if mag> escape then

begin
putpixel(i,j, iter
continue : = FALSE

end

square z l
add c }
calculate square of modulus l
increment counter l

color escaping points}

div 2):

2-9
'Ihe Mandelbrot set.

Joundations of chaos dt fractal theor!I Iii

,4 note
on the images

9nverse iteration
&boundary

scanning methods

El Jractal }Vlania

Notice how you output the pixel color in terms of the number of iterations.
Also notice that you have a flag. cont i nu e. which is used to break out of the
outer loop. You might want to examine program MANDEL2.PAS more closely
to get a better feel for the algorithm.

By making tiny adjustments to the initial conditions in the Mandelbrot and
Julia sets, you can generate an amazing variety of different types of fractals .
These dynamical systems are very sensitive to minor variations in initial
conditions. the accuracy of the computer, and the number of iterations used
to determine escape, and all of these can affect the appearance of the final
image. For example, some of the images generated here. which you might
have seen elsewhere, might differ slightly in levels of detail. Remember that
the images in this book have been generated with a simple personal
computer with ordinary graphics and not on a supercomputer with high
resolution graphics. The details might be different, but the overall
morphology or shape is the same. Finally, the choice of colors and their
assignment is arbitrary.

This book uses the method of finding escaping orbits to generate Julia and
Mandelbrot sets. However, as a point of interest. I should briefly discuss the
inverse iteration method (IIM) and boundary scanning method (BSM).

The inverse iteration method essentially takes advantage of the fact that if
f (z) = z2 + c = w. then the inverse8 of the function, denoted 1-1(z). is:

1-l(z)=±~

The orbits are then found by iterating randomly on +J-1(z) and-J-1(z) . In other
words, IIM takes advantage of symmetry to halve the number of calculations.
However, on many computers the square root operation takes much longer
than twice the square operation (so the savings might not always be there),
but there can be significant savings in memory use if tables of values are
stored. This can also speed execution.

The boundary scanning method works by sliding a box or window across the
region of the complex plane to be plotted. The points at the corners are then
tested for attraction. If all four points attract to the same point, then the
center of the box is an attractor; otherwise it repels. The technique is a three
dimensional analogy of testing if a car on a roller coaster is at stable or
unstable equilibrium. If it's stable, then the cuplike region formed is said to
be a basin of attraction (see FIG. 2-10). BSM is truer to the definition of the
Julia set, and so often generates crisper fractal images. However, it takes far
more computations than a simple search for attracting points.

You can generate fractals in three dimensions, but instead of plotting points
on a plane, you need a cube or three-dimensional space. For this purpose,
complex numbers aren't sufficient; instead, you need more sophisticated
mathematical tools called quaternions. These are hyper-complex numbers or,
in essence, a pair of complex numbers.

A quaternion qis written as:

q = ro + ix + jy + kz (2.12)

The numbers i, j, and k are all the positive square root of -1. That is:

Note that if y and z are equal to 0, qis just a complex number. In three
dimensional fractals, if you set w = 0, the x, y and z terms are used to select
the x, y and z coordinates of a pixel in three-dimensional space.

The manipulation of quaternions is much more complicated than for complex
numbers because quaternions and their associated operations form what's
termed a noncommutative algebra. What this means is very simple. Whereas
x. Y= Y•x for any two real or complex numbers, with quaternions this
doesn't hold!

2-10
}Jasin of attraction used in
the bounaar0 scanning
method

q:hree
dimensional
fractals

Joundations of chaos dt fractal theory -

llil Jractal jVlania

For example, for quaternions, the following is true:

However:

J •i = -k

In general, quaternions satisfy the multiplicative rules:

i2=J2=k2 =-1

i•J=-J•i=k

J 0 k=-k 0 j =i

k 0 i=-i 0 k=J

Quaternions are used in the generation of three-dimensional fractals and in
three-dimensional rotational kinematics (the study of motion). A further study
of quaternions is beyond the scope of this book, but it 's interesting to note
that three-dimensional fractals are likely to appear in many applications.

ehaosck
fractals
in nature

"And Chaos, ancestors of Nature, hold
Eternal anarchy, amidst the noise"

- John Milton, Paradise Lost

This chapter looks at natural phenomena that are chaotic in nature and
discusses how you can model natural phenomena in terms of fractals . You
might be especially interested in writing programs that can simulate natural
beauty.

You can see the chaos of nature in the study of population dynamics,
particularly in the relationship between predator and prey. Although the
models used are necessarily simplistic, they provide significant insight into
the interrelationship between animals in a small part of the food chain.

For example, suppose an ecologist is studying the population of caribou on
an island in Canada. The population is unstable because of crowding,
disease, and lack of food. The ecologist proposes to introduce some wolves
on the island to help stabilize the population.

Let's model this system and see why it's highly unstable. Let caribou(t),
wolf(t) be the number of caribou and wolves at time t, respectively, and let
cariboub be the rate of birth of the caribou. If there were unlimited resources
of food, space, and so on, then the excess of the birth rate over the death rate

Population
dynamics

Chaos dt fractals in nature -

lfl Jractal }Vlania

for the caribou is positive. In the absence of predators, then the population of
caribou grows at a rate of:

growth(t) = cariboub • caribou(t) (3.1)

The death rate from wolves depends on the number of encounters between
wolves and caribou, K, and is assumed to be proportional to the number of
caribou:

death(t) = K • caribou(t) • wolf(t)

Then the equation controlling the caribou population is:

caribou(t+ 1) = caribou(t) + growth(t) - death(t)

or

caribou(t + 1) = caribou(t) + cariboub • caribou(t) - K • caribou(t) • wolf(t)

(3.2)

To simplify the model, assume that the death of each caribou results in the birth
of one wolf. This is the only means by which the wolf population can grow.
However, it's subject to a death rate of wolfd. Thus, the wolf population is:

wolf(t + 1) = wolf(t) + K • caribou(t) • wolf(t) - wolfd • wolf(t)

I've set up this simulation as a discrete simulation, which means that I've
used a finite difference equation to model it1. I could have created a
continuous simulation, but this would have involved a mathematical tool
called a differential equation and very sophisticated software to solve the
equation.

(3.3)

By correct selection of the predator and prey populations, the birth rates, and
the death rates, the system should show stable oscillations of both species.
Otherwise, the system will become unstable (chaotic), resulting in the
extinction of the wolf or both populations.

To illustrate, a Pascal program to calculate the caribou and wolf populations
is given in the PREY.PAS file on your disk. You should run this program as
you follow this discussion. You can also use a common spreadsheet
application program such as Lotus 1-2-3 to generate graphs that give a visual
representation of the population dynamics. Included on your disk is a Lotus
version 3.0 file, WOLVES.WK3, which simulates the caribou-wolf system. You
need to copy row 6 down to row 1000 to simulate 1000 months of activity. For
discussion, I've included some of the graphs generated using Lotus 1-2-3.

You'll find that our little predator-prey system is not very sensitive to the
initial populations. However, it's extremely sensitive to the death rate to
contact ratio K.

For example, FIG. 3-1 depicts the populations over 1000 months with the
following parameters:

■ Initial population of caribou, caribou(0) = 10,000
■ Initial population of wolves, wolf(0) = 1500
■ Birth rate for caribou, cariboub = .01
■ Death rate for wolves, wolfd = .05
■ Death rate contact ratio K = .000006

12

11 -

10
Caribou

9 -

8 -

{/) 7 -'O
i:::
ctl

6 -{/)

;::::l
0

..c:
5 -E-<

4

3 Wolves
2

1

0 I

0 100 200 300 400 500 600 700 800 900
Time in Months

Try running PREY.PAS with these values. Notice how this is a nicely stable
system. When the caribou population gets too high, the wolf population
increases shortly thereafter to keep it in check. When the caribou population
drops, the wolf population falls soon after.

However, if you change the parameter K, the death contact ratio , even
slightly to K = .00001, you generate the population profile shown in FIG. 3-2.
Try running PREY.PAS with these values. Notice how there are wild swings
in both populations, and at times, the wolf population is dangerously close to
extinction.

Finally, when parameter K = .000014, the system is completely unstable, as
depicted in FIG. 3-3. The initial population of caribou is quickly decimated,
leading to the eventual drop in wolves. Both populations make a weak
recovery, but when the caribou population drops, the wolves are eventually

3-1
Population dynamics of
the rnribou-wolf system
with K = .000006.

ehaos di fractals in nature Ill

12

10 aribou

8

en

3-2 'O
@

Population d0namics of en 6
;'.j

the caribou-wolf s0stem 0
..c:::

with K = .00001. E--<

4

2
Wolves

0
0 100 200 300 400 500 600 700 800 900

Time in Months

60

50

40

en

3-3
'O
@ 30

Population d0namics of en
;'.j

the caribou-wolf s0stem 0
..c:::

with K = .000014.
E--<

20

10
Caribou

\
Wpv s

0
0 100 200 300 400 500 600 700 800 900

Time in Months

- Jractal }Vlania

extinct. This leads to an explosion in caribou, which would probably drop
dramatically due to lack of food, space, disease, and so on, although this is
not captured by the model. Using the spreadsheet model, or program
PREY.PAS, you should experiment with initial conditions, and the various
parameters to determine which of them lead to instability.

You can use fractals to generate images that resemble many types of
animals. For example, you can see an infinite number of self-similar seals or
dolphins frolicking in FIG. 3-4. I generated this image by running program
SEAL.PAS with the IFS codes given in TABLE 3-1 .

Table 3-1
IFS transformation rule for seals.

1 2 3 4 5 6 probability
1 -0.5 0 0 0.5 0 0 0.25
2 -0.5 0 0 0.5 2 0 0.25
3 -0.4 0 1 0.4 0 1 0.25
4 -0.5 0 0 0.5 2 1 0.25

7"nimals

3-4
Seals.

Chaos di fractals in nature -

genetics

3-5
An amoeba-like image

genera tee/ from the
fil/ecl ':Julia set of

f(z) = z2 + .3-4i.

It's no wonder that some genetic researchers theorize that the mutation of
genes-previously thought to be random-is not, but rather chaotic with
various strange attractors. Moreover, you can conjecture about the
morphology of cells. Is the shape of a cell random or chaotic? Figure 3-5 shows
an amoeba-like image generated from the filled Julia set of f(z) = z2 + .3 - 4i.

""

Weather The weather is widely known to be a chaotic system. Storms and calm
weather often appear without explanation. Embarrassed weather-people are
constantly trying to decide where a certain prediction went awry. Edward
Lorenz, one of the fathers of meteorology, and the first to recognize chaos in
climatic systems, noted that in theory the flapping of a butterfly's wings in
Tokyo might cause a storm over New York.

- Jractal iVlania

In this sense, measuring the weather can also affect it. Certainly the devices
measuring wind speed have a more profound influence than the flapping of a
butterfly's wings. This reminds me of the well-known principle in physics
called Heisenberg Uncertainty. The principle states that an observer can't
know precisely the position and velocity of a particle at the same instant.
An interpretation of this is that in measuring the position or velocity of the
particle, the measuring instrumentation changes one or both. Could this
mean that, by measuring the forces that determine weather, you're doomed
to affect it, thus rendering your predictions hopelessly inaccurate?

In this section you'll see many beautiful computer-generated images, most of
which were created by playing with the data in the transformation matrix of
Barnsley's iterated function system algorithm.

You can generate many beautiful trees, leaves, and flowers using both IFS and
Julia set fractals. For example, one of the most commonly seen fractals is the
black spleenworth fem leaf shown in FIG. 3-6. This was generated by iterating
a well-known mapping rule, encoded in the program FERN.PAS, which you
can run. Table 3-2 shows a matrix-encoded form of the mapping for the fem.

Table 3-2
IFS transformation rule for fem.

1 2 3 4 5 6 probability
1 0.5 0 0 0.16 0 0 O.D1
2 0.85 0.04 -0.04 0.85 0 1.6 0.85
3 0.2 0.26 0.23 0.22 0 1.6 0.07
4 0.15 0.28 0.26 0.24 0 0.44 0.07

By changing the parameters in the IFS matrix, you can generate a tree using
code similar to the one used for the fem. In this case, the program is called
TREE.PAS, and it uses the mapping rule described in TABLE 3-3. The output
of the program is shown in FIG. 3-7.

Table 3-3
IFS transformation rule for tree.

1 2 3 4 5 6 probability
1 0 0 0 0.5 0 0 0.05
2 0.42 -0.42 0.42 0.42 0 0.2 0.40
3 0.42 0.42 -0.42 0.42 0 0.2 0.40
4 0.1 0.0 0 0.1 0 0.2 0.15

Scenes
from nature

'trees, leaves, dt
flowers

Chaos dt fractals in nature lfl

- '3ractal)Vf.an, ·a

l

By outputting many trees of different size, color, and position, you can create
a forest. Program FOREST.PAS does just that, and its output is shown in FIG.
3-8. When you run the program, trees start popping up all over the place, like
some primeval forest. It really is quite a wonderful effect.

The program is essentially the same as the other IFS programs except that
the following code has been added:

xpos : = random(MaxX); pick tree pos i tion
ypos : = random(MaxX) ;
scale : = random(3) + l; pick tree sca l e
crand : = random(lO) + 1; pick tree co l or
case crand of

0,1,2,3,4 , 5,6 , 7 ,8 :
color GREEN; most trees are green)

9 color YEL LOW; some t rees are yellow)

10 color BROWN; some trees die)

end ;

The first two lines select a starting x and y-coordinate for the root of the tree
between one-fourth and eleven-twelfths of the way from the edges of the
screen. The scale of the tree is selected from between one and three, so that
the largest trees are three times larger than the smallest, and some are in
between. The fourth line selects a random number between one and ten, so
that a color can be assigned. The program assumes that 80 percent of the

3-7
rJS representa tion
ofci tree.

ehaos di fractals in nature Ill

3-8
,L/ forest of mnaom/0

genemtea fmctal trees.

m Jractal JV(ania

trees are green, while 10 percent are dead (brown) and another 10 percent are
yellow. With these criteria, the program then proceeds to generate 100 trees.
You'll use this approach to generate other scenes.

Another type of forest is illustrated in FIG. 3-9 and can be generated by
running program REDMOSCL.PAS. Here you see a view of a redwood forest
with a lush green floor and huge trees, whose tops are obscured by a mist.
Again, the effect was achieved with iterated function systems. The floor of
the forest is simply composed of trees again, while the redwoods and mist
were generated with other IFSs with different parameters.

Finally, I produced green seaweed using the program SEAWEED.PAS. Figure
3-10 shows the output. Table 3-4 gives the IFS codes for the seaweed.

Table 3-4
IFS transformation rule for seaweed.

1 2 3 4 5 6 probability
1 0.5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 2 0 0.25
3 0.4 0 1 0.4 0 1 0.25
4 0.5 0 0 0.5 2 1 0.25

3-9
A redwood forest.

3-10
(jreen seciweed.

ehaos dt fractals in nature El

3-11
"jour-petaled flower
from the ']ulia set of

f (z) = z- + 0.384.

m '3ractal jVlania

Using Julia sets, you can create beautiful flowers . For example, the program
FLOWERl.PAS implements the Julia set of:

f (z) = z- + 0.384

This generates the lovely four-petaled rose shown in FIG. 3-11.

You can generate a chrysanthemum by changing the constant term slightly
to 0.2541. That is:

f (z) = z- + 0.2541

The program FLOWER2.PAS implements this, and the output is shown in
FIG. 3-12.

3-12
Another four-petaled
flower from the ']u/ia set of
f (z) = i2- + 0.2541.

You can exploit the billowy appearance of some fractals to generate cloudlike Clouds
pictures. For example, FIG. 3-13 shows a threatening storm cloud generated
by program CLOUD.PAS. The program finds the Julia set of:

f (z) = z 2 - 0.194 + 0.6557i

It suppresses all colors except white and yellow, which are mapped into the
colors light gray and dark gray using the case statement:

case iter div 2 of
WHITE: putpixel(i,j, LightGray);
YELLOW:putpixel Ci ,j. DarkGray)

end:

ehaos di fractals in nature El

3-13
Ii fractal storm cloud

You can also use IFS systems to generate clouds that appear three
dimensional. For example, the clouds shown in FIG. 3-14 were generated with
the program CLOUDS2.PAS. The IFS codes for it are given in TABLE 3-5.

Table 3-5
IFS codes for three-dimensional fractal clouds.

1 2 3 4 5 6 probability
1 0.5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 2 0 0.25
3 -0.4 0 1 0.4 0 1 0.25
4 -0.5 0 0 0.5 2 1 0.25

Rocks The generation of rocks and clouds can be handled similarly by changing
colors. For example, try changing colors in program CLOUD.PAS by mapping
white into brown, and yellow into red to generate a rock-like formation.

- Jractal)Vlania

Another way to generate a rock formation is with iterated function systems.
For example, consider the IFS code table for program CLOUDS2.PAS. By
changing the color to brown, you can generate the rocks shown in FIG. 3-15.

3-14
'"Ihree-dimensiona/"
fractal clouds.

3-15
fractal rocks using the
same /JS codes as
fractal clouds.

<:haos di fractals in nature m

Snowflakes Using fractal techniques, you can easily generate images that look like
snowflakes. One type of snowflake, shown in FIG. 3-16, was generated from
the Julia set of:

3-16
Snowflakes generated bl:J

SNOW.PliS.

- Jractal }Vlania

f (z) = 2 2 + 0.11031 - 0.67037i

This marvelous effect was achieved by running the program SNOW.PAS and
coloring only the white pixels, with the code:

i f (it er di v 2 = WHI TE}
put pixe l (i , j , WHITE) ;

Finally, you can generate a lovely snowfall, as shown in FIG. 3-17, by repeated
random generation of the "cross fractal," much in the same way the forest
was generated. Look at one of the snowflakes. It's just a square divided into
nine equal parts with the four outer-middle boxes removed, as shown in FIG.

3-18. The cross fractal is generated with the IFS codes shown in TABLE 3-6.
Many of these little fractals are generated in different scales and positions to
achieve the effect. You can produce the snowfall by running the FALL.PAS
program. The resulting image appears to progress from a flurry to a blizzard.

.
~

X
~

~~
:>C

~ ~
X •

~
~

•

• :x:
X
X ~ ..

1
1 0.33
2 0.33
3 0.33
4 0.33
5 0.33

x~ ~8 ~
• . X X

~

N
~ X

:K:

X ~ ~
X

X X)(: ~

~x }: ~ ~
X •

)C• .
• :i,c 3-17

" ~~ X X
,q_ snowfall generated bij

• 7,Lf_[[p,q_5. K ~ X ~x ' • • X
X ~ :IC

~ ~K
~ xx ~

~ . :lie

:x: X
K

X
~ X X

.

Table 3-6
IFS codes for cross fractal.

2 3 4 5 6
0 0 0.33 1 1
0 0 0.33 MaxX 1
0 0 0.33 1 MaxX
0 0 0.33 MaxX MaxX
0 0 0.33 MaxXdiv2 MaxXdiv 2

.
•

X
:,c

II

X ~ :ic .
• ...

probability
0.20
0.20
0.20
0.20
0.20

3-18
Cross /metal used to
generate snowflakes.

ehaos di fractals in nature Iii

galaxies Slight modification of the FALL.PAS program yields what appears to be the
view of some unknown region of space shown in FIG. 3-19. By changing the
snowflake scaling factor so that it's very small, the flakes become stars. You
can see this by running the GALAX1.PAS program. Finally, by looking again
at FIG. 3-16, you can see that it resembles twin swirling galaxies.

3-19
I'./. rcmdom/0 generated

view of space.

Coastlines Any one of the fractals generated using Julia sets (for example, FIGS. 3-13 and
3-20) could represent the coastline of some mythical country viewed from
above. Because the fractal is self-similar, it doesn't matter whether the
viewer is one-thousand miles or one foot away.

Jra.cta.ls in
the human

body

m Jractal }Vlania

In addition, any section of these fractals has the property of infinite length.
This might defy intuition, but if you tried to use a piece of string to trace the
coastal outline, you'd run out of string. Perhaps the coast of England is
infinitely long, as Mandelbrot has said!

Many structures within the human body suggest a complex interrelation
between biological development, form, and function. Scientists have
wondered if underlying physical constraints lead, through scaling, to the
ultimate form of plants and animals. For example, does the shape of a DNA
molecule have a direct relationship to the shape of the organism it describes?
Let's look at some instances where the human body might harbor fractals .

Our lungs contain millions of air sacs called alveoli, which provide a
mechanism for the exchange of gases. These are connected via increasingly
larger bronchial tubes to the trachea in a structure shown in FIG. 3-21. That
structure is very similar to the tree fractal previously shown in FIG. 3-7.

As the bronchial tree branches out, its tubes decrease in size. From one
branching to the next, the diameter decreases at about the same ratio until
there's a change in the mechanism of flow, from minimum resistance near
the beginning to molecular diffusion within the alveoli. This structure might
also be similar to neural connections in the brain.

3-20
Dendrite structwe
generated b11
f(z)=t'-+i.

ljronchial growth

Some researchers have suggested modeling the wiring of the brain and }Veuron growth
neuron growth using fractal bifurcation patterns (DeAngelis 1993). For
example, the tree fractal has been cited as one mechanism for neuron wiring. 2

In addition, neural activity tends to be fractal-like and chaotic-more so
when the brain is involved in active problem solving (DeAngelis 1993).

C:haos dt fractals in nature Ell

3-21
The bronchial tree

structure in our lungs
resembles a fractal.

Physiological
processes

m Jractal }Vlania

With fractals, you can generate a structure that resembles dendrites, the
main connectors between the neural processing elements of the brain. For
example, look again at FIG. 3-20, which shows the filled Julia set generated by
the function:

f(z) = z2 + i

Could the function f be the underlying mathematics behind the dendrite?
Nobody knows.

In addition to physical structure, physiological processes might be subject to
the scaling properties that characterize fractals . Fractal processes within
organisms can't be characterized by a single scale of time, but instead, have
components at many frequencies. For example, some researchers have
related the geometry of the nerves in the heart to the associated
electrocardiogram3 output. Similar findings have been reported for the
electrical activity of a neuron and variability in heart rate. Some scientists
even speculate that diseases are caused by a disruption of the normal fractal
scaling (West and Goldberger 1987).

The image in FIG. 3-22 was generated by the program EKG.PAS using the
Julia set for:

f (x) = z2 - 1.5

Could this be related to an actual EKG?

Recent theories in psychology (DeAngelis 1993) conjecture that behavior
might be determined by chaotic phenomena (some lay persons believe this
already!). For example, viewing the mind as a complex dynamical system,
psychologists contend that everyday, "normal" behavior represents attracting
states. However, the chaotic and unstable nature of the mind often leads to
drastic, random behavior shifts that, when harmless, are considered
impulsiveness, but, when harmful, are considered dangerous psychosis.
Some theorists believe that "crisis-prone" families aren't behaving randomly
but simply according to a different norm. Practitioners believe that because
the behavior patterns are highly chaotic, they can be changed from an
abnormal pattern to a normal one with only a slight nudge.

3-22
ltn EKy output7

Chaos of the
mind?

Chaos & fractals in nature -

Simulated
fractals & chaos

Chaos umpire sits,
And by decision more embroils the fray
By which he reigns; next him high arbiter
Chance governs all

- John Milton, Paradise Lost

In this chapter, you'll see how human-made systems can exhibit chaotic
behavior, how this chaotic behavior can be harnessed, and how it can be
harmful. You'll also see how fractal images can be used in modeling and
predicting the performance of systems created by humans.

Fluid flow (of liquids and air) is a major application area in dynamical 'turbulent flow
systems. Anyone who has ever flown in an airplane is familiar with turbulent
flow, or turbulence. Turbulence is characterized by disorder on all scales,
with backward eddy currents and circular waves. In most systems,
turbulence is undesirable because it creates drag and loss of energy through
increased friction. Many human-made systems can exhibit chaotic turbulent
flow, from the output of jet engines to the flow of oil through a pipeline.
Automobile, airplane, and boat manufacturers use wind tunnels to design
vehicle profiles that don't promote turbulence. 1

You can readily find situations that exhibit turbulent behavior in everyday
life. For example, boil a pot of water over a stove. As the water slowly boils,
steam begins to escape from the surface. Next, the water slowly and

Simulated fractals & chaos El

rhythmically begins to ripple until finally a turbulent, rolling boil is reached.
This turbulence is chaotic and random-appearing, yet there's some
semblance of regularity as well. It's almost as if some pattern wants to
emerge.

A second demonstration of turbulence, suggested by Moon (1992), also
involves water. Take a dinner plate and place it under a tap. Fill the dish with
water to overflowing, and continue to gently run the water. Place a ping
pong ball in the dish and adjust the water until the ball bounces around
merrily, performing chaotic oscillations.

Structures The artist M. C. Escher was famous for his sketches and woodcuts that
depicted impossibly beautiful buildings and other architectural marvels. The
architect I. M. Pei was also noted for his impossible designs, with bizarre
acute angles that defied conventional technique. Find a book on architecture
to see the mathematical intuition that Pei possessed. Using fractals, and in
particular IFS fractals, you can create "human-made" structures that appear
to be functional as well as beautiful.

4-1
Castle.

- ',ractal)Vl.ania

For example, try running the program CASTLE.PAS, which is shown in FIG.

4-1. It appears to be the walled ramparts of some medieval castle. The IFS

codes for the program are shown in TABLE 4-1. The beautiful, mazelike
structure shown in FIG. 4-2 can be generated by running the MAZE1.PAS
program. Table 4-2 shows the IFS codes for this program.

Table 4-1
IFS codes for castle.

1 2 3 4 5 6 probability
1 0.5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 2 0 0.25
3 0.4 0 0 0.4 0 1 0.25
4 0.5 0 0 0.5 2 1 0.25

. . ~ P.L
~f&&

~~ ·:~ .
~

~

~

'

4-2
,,q_ fractal maze.

Simulated fractals dt chaos -

eomputer
scene

analysis

':Image
compression

ID Jractal)Vlania

Table 4-2
IFS codes for maze.

1 2 3 4 5 6 probability
1 0.33 0 0 0.33 1 1 0.166
2 0.33 0 0 0.33 MaxYdiv 2 1 0.166
3 0.33 0 0 0.33 1 MaxY div 2 0.166
4 0.33 0 0 0.33 MaxYdiv 2 MaxY 0.166
5 0.33 0 0 0.33 MaxY MaxY 0.166
6 0.33 0 0 0.33 1 MaxY 0.166

Scene analysis is the process of extracting specific features from a larger
picture or scene. Many applications exist for scene analysis. For example,
mobile robots typically use scene analysis to navigate over terrain. Also,
target acquisition programs used in civilian and defense systems use scene
analysis to locate a designated object inside an image. For example, medical
diagnosis software uses feature analysis to locate specific cell configurations
such as tumors or fractures .

Fractal models are useful tools in certain types of three-dimensional scene
analysis of two-dimensional images because fractals can model an object's
surface roughness. Fractals are especially well suited for this because surface
roughness is known to be scale invariant within the effective resolution of
most imaging devices. Fractal models have been used to very accurately
classify natural textures such as skin, rock, cloth, and grass.

Image compression is the process of reducing the amount of stored
information needed to reproduce an image. In fractal compression
techniques, the bit-by-bit storage of the image is replaced by its
representation by an iterated function that requires significantly less storage.
The disadvantage, of course, is that it often requires significant time to
regenerate the image from the iterated function rather than simply displaying
the image pixel by pixel.

The quality or level of compression is expressed in terms of a compression
ratio. The compression ratio is the ratio of the bytes required to store an
uncompressed image to those needed to store the compressed equivalent.
Compression rates for fractal compression seem to be in the range of from
20:1 to 60:1 , but with questionable quality.

To illustrate the power of fractal compression, consider the forest that was
shown in FIG. 3-8. If the computer screen that displays the image is 640 by
480 pixels and requires 16 bits or two bytes per pixel, then the following
equation shows the bytes of storage needed:

640 X 480 X 2 = 614400

Whereas the program used to generate the image required only the data
contained in the IFS matrix. Assuming that each number in the matrix
required four bytes and four additional four-byte numbers were needed for
the probability that the transformation in a row was applied, then you only
needed to store the following number of bytes:

24 X 4 + 4 X 4 = 112

Then the compression ratio for the forest image is:

number of bytes for screen image

number of bytes for IFS codes

That's 614400/112, which is a compression ratio of 5485:1. This is an amazing
savings in storage, which is due to the very low quality of the image
rendered. A higher-quality image would necessitate a much lower
compression ratio. However, if the image were to be transmitted by a satellite
to the earth, you would realize an incredible savings in the time needed to
transmit the image.

According to Barnsley (1988), fractal compression is facilitated by a
measure of deviation between a given image and its approximation by an
iterated function system (IFS). The Collage Theorem (1988) essentially
states that to find an IFS attractor that's close to the desired image, you
have to find a set of mappings and transformations such that their union or
collage is close to the desired image. Unfortunately, this process of finding
the transformations is agonizingly slow, even on the most powerful
supercomputers.

One of the greatest problems with fractal compression of images is that it's
difficult (if not impossible) to find a fractal that will generate a given image.
At this writing, it's generally done by trial and error. There are certain fractals
that look like trees, mountains, clouds, and so on. These can be tuned to
imitate a picture that needs to be compressed.

For example, FIG. 4-3 depicts a swamp pond near my home. This certainly
appears to be fractal-like. By tinkering with various IFS parameters, I came
up with the suggestive image shown in FIG. 4-4.

To generate this image, I used the IFS codes given in TABLE 4-3. By
generating this fractal in many positions, sizes, and colors, I made it similar to
the forest image. The code for this is in SWAMP.PAS, and I encourage you to
examine it to see that it's very close to FOREST.PAS. Is the computer
generated image faithful to the original? I'll leave it to you to decide if it's
close enough.

Problems
with fractal
compression

Simulated fractals fk chaos Iii

4-3
Photograph of a

swamp pond.

4-4
Computer-generated

equivalent of
a swamp pond.

Bl Jractal)Vlania

Table 4-3
IFS codes for one clump in a swamp.

1 2 3 4 5 6 probability
1 0.5 0 0 0.25 1 1 0.25
2 0.25 0 0 0.7 50 1 0.25
3 0.25 0 0 0.7 1 50 0.25
4 0.5 0 0 0.25 50 50 0.25

Apparently, scientist Michael Barnsley has developed an algorithm that can
generate the IFS codes for any image (although there are probably
restrictions). However, at this writing, his technique is proprietary.

Another problem associated with the compression of images using fractals or
otherwise is that the compression and decompression can take substantial
time, and this penalty can sometimes be prohibitive. Consider, for example,
the program JULIA1.PAS, which generates the image associated with the
Julia set off (z) = cos(z) . (Refer to FIG. 2-2.) Remember how long it took to
generate this picture? In some cases, it took much more than an hour. That 's
the drawback of image compression. In many cases involving real-time
image processing, for the human eye to perceive continuous motion the
screen must be updated at 33.3 times per second; this time delay is wholly
unacceptable.

Mandelbrot was one of the first to recognize that scaling is an important
feature of pricing in economics. He analyzed the price of cotton (based on
Department of Agriculture figures) during the period from 1880 to 1958. An
interesting pattern emerged. When Mandelbrot plotted a suitable function of
the price of cotton during the period from 1900-1905, it resembled the same
plot for the period from 1880-1940 and for the period from 1944-1958. In other
words, he identified a self-similarity in price across scale. (See FIG. 4-5.)

$ $ $

1880 1958 1944 1945

Economic
systems

4-5
Self -sim ilaritlj of cotton
prices during a centurlj,
a 0ear, and a month.

Simulated fractals di chaos El

4-6
l31furcatio11 aiagmm for a
moael economic s0stem.

- Jractal }Vlania

It 's still unknown if Mandelbrot discovered fundamental truth in pricing of
commodities or if it was simply a coincidence. Certainly, if you could
guarantee the fractal nature of the price of cotton with certainty, you could
make a killing on the Chicago Mercantile Exchange!

To see, however, that this might be possible, consider a simple economic
system that features a single product, say widgets, with price P and a market
of buyers and sellers. If the amount of widgets produced stayed fixed, then
basic economic theory says the price should be a linear function of the
demand, and thus would rise or fall by a factor of a. The price of widgets at
time t would then be:

P(t + 1) = aP(t)

The price at any time t + 1 is just the price at the previous time times the
factor a.

Suppose that, in order not to appear greedy, the sellers decide to lower their
price by the quantity aP(t)2. (The sellers know that what they lose in profit
margin they make up in volume anyway.) The price, then, at time t + 1 is:

P(t + 1) = aP(t) - aP(t) 2 (4.1)

This equation is known as the logistics equation, and it was first proposed as
a model for population growth by P. F. Verhulst in 1845.

Let 's simulate the system by assuming that the starting price for the widget
is 90 cents and sweeping the demand factor a from 2.5 to 4.0. You then
iterate the price over time (the time scale could be days, months, years, or
otherwise), skipping the first 50 iterations to allow the price to "stabilize."
You then plot the price P(t) on the y-axis against the demand factor a on the
x-axis. You can see this by running the PRICE.PAS program. Its output is
shown in FIG. 4-6. Notice that the figure is similar to the bifurcation fractal
shown in FIG. 1-4, just as PRICE.PAS is similar to BIFUR.PAS.

Note that for any particular value of a (plotted on the x-axis) , there are many
prices associated with it. The price is unstable. However, there are a few
values for which the price seems to flip-flop between two numbers. These
bands of stability are characterized by bald spots in the plot.

One final note is that equation 4.1 is almost identical to equation 2.11 (used
to generate the Mandelbrot set) except that the former involves real numbers
instead of complex ones. It should be no wonder, then, that they both
generate self-similar images.

A type of mathematical abstraction, called cellular automata, has a profound
relationship to both fractals and chaos. Cellular automata have been studied
as a model for biological cell behavior and massively parallel computers.

Cellular automata, which were originally investigated by John von Neumann
and others, consist of a space of unit cells. These cells are initialized with
some value, generally a "1" representing a "live" cell, and a "O" for a dead or
unoccupied cell. Different characters can be displayed to represent these
states, but the idea is that some rule describing the evolution of the system is
defined. This rule describes the contents of a unit cell at time tin terms of the
contents of the cell and its neighbors at time t - 1.

An important feature of cellular automata is the ability to self-organize, or in
the terms of chaos theory, find attractors. In addition, many types of cellular
automata will eventually attract to stable, fractal-like formations. This
attraction occurs with relative indifference to the initial state of the cell field .

Steven Wolfram, a leading expert on cellular automata, has classified cellular
automata in a way that helps to reveal their relationship to chaos.

• Class I: evolution to a homogeneous state (an attractor)
• Class II: evolution to isolated periodic segments
• Class III: evolution that is always chaotic
• Class IV: evolution to isolated chaotic segments

You'll be seeing some cellular automata that fit each of these categories. As
you read along, try to decide for yourself what stage of evolution the
automata are in.

In a one-dimensional cellular automaton, the cells are organized in rows, and
a cell's contents at time tare based only on the contents of the cell and its
neighbors on either side at time t - 1. In one-dimensional cellular automata,
you trace the evolution of the system by observing the row at time t followed
by the row at time t + 1, and so on. In many cases, the result is chaotic or
unstable, but in some cases a strange attractor is found.

For example, on your disk you'll find a program called CELL1.PAS, which is a
Pascal implementation of a cellular automaton that follows the cell rule:

a~ = (a_1 aoa1) + (8_1 a1) + (ao81)

Let's see what this rule means.

eellular
automata

One-dimensional
cellular automata

Simulated fractals de chaos m

Iii Jractal }Vlania

The symbol a~ represents the contents of a given cell at time t. Similarly, Bo is
the contents of the cell at the previous time, t- 1. Finally, a_ 1 is the contents
of the cell on the left at time t - 1, and a1 is the contents of the cell on the
right at time t - 1.

Multiplication represents the Boolean AND operation, which produces a one
only if both operands are one2• The addition symbol, +, represents the
Boolean OR operation, which produces a one if one or both operands are one.
Finally, the bar over a cell's contents, for example a;;, indicates that its
Boolean complement is to be taken, which is simply a one if the cell contains
a zero, and vice versa. Thus, the cell rule says in words that

A cell is alive if both its neighbors and it are alive, or if its left neighbor is
dead and its right neighbor alive, or if it and its right neighbor are alive.

Isn't the mathematical notation more compact? In fact , it can be simplified,
by logical inference, to be:

A cell is alive if its left neighbor is dead and its right neighbor alive, or if it
and its right neighbor are alive.

That statement has the following symbolic equivalent:

a~= (a_1a1) + (aoa1)

I didn't simplify the rule in CELL1.PAS, but you should, just for practice.

When you run program CELL1.PAS, it will prompt you for the starting
configuration of the cell system. You're then to enter a line of asterisks (" * ")
corresponding to the live cells. Try entering a line of spaces followed by an
asterisk in column 40 like this:

*
The program will prompt you for the number of iterations to run, that is , the
number of time ticks for the system. Respond with 22. The output of the
program should look like a Sierpinski triangle, as shown in FIG. 4-7. It's
amazing that, like a seed crystal, a single cell site results in the strange
attractor of the Sierpinski triangle. (If you had written the program so that
single pixel activations represented cells, then you could see this even more
dramatically. Try it as project!)

You can have fun experimenting with function r u l e in program CELL 1. For
example, try coding these rules:

1. a~= (a_1Bo) + (a_1ifi) + (a_1a1)

2. a~= (a_1Bo8i) + (a_1 ao) + (a_1a1) + (aoa1)

•

•
• •

• •
••••

• •
• • • •

• • • •
• • • • • • • •

•
• • * •

4-7 * *
* * * *

* *

* *
* * * *

* *
Sierpinski triangle output
of the [IJEPAS progmm.

* * * * * • * •
* * • • • • * *

• * * * * • * * * * * * • * • •
•

* •
• •

* * • *
*

* *
•

* *
• • * *

*
* •

* *
* * * *

•
* •

*
* *

* * * *

Then run the program and use the same input as before; that is, seed it with
a single cell site.

Some one-dimensional cellular automata, for instance the one you just saw,
generate interesting fractal-like patterns based on an initial configuration
using only one cell. These systems can be models of crystal growth in certain
types of structures that are generated from a single seed crystal. However,
other cellular automata take a random, multiple cell input and organize it to
find attractors after many iterations. The organization can be in the form of a
regular or fractal-like pattern, or it can result in some form of oscillating
structure.

Let's look at one rule that organizes a random initial cell configuration into a
fractal-like state. Examine file CELL2.PAS. It's essentially the same program
as CELLl.PAS, except with the evolution rule:

Run it, giving it any random (nonempty) initial cell configuration, such as:

*** * ** * **** * * *** *** * * *** * * *** ** ** *** ** ** **

Be sure to populate the input line with many live cells. Remember, this is
supposed to be a random starting configuration; asterisks or live cells are just
as likely to occur as dead or blank cells.

Simulated fractals di chaos Iii

The program will then prompt you for the number of iterations (generations)
to run. Respond with at least 50 iterations and watch the dynamic results .
The output will resemble FIG. 4-8 but will be constantly changing. Notice
that, although it 's random, it appears to be organizing or at least oscillating
through different configurations. Try running this automaton for several
hundred iterations.

Other rules that will organize a random initial configuration after a large
number of iterations are:

1. a~ = (a_1 ao a;) + (a_1 aoa1)

2. a~= (a_1 aoa1)

You can test these by modifying CELL1.PAS or CELL2.PAS.

CCwo-dimensional A cellular automaton that's organized as a two-dimensional matrix or array of
cellular automata cells is called a two-dimensional cellular automaton. Here, a cell's contents at

time tis based on its own contents and the contents of all its immediate
neighbors at time t - 1. One two-dimensional cellular automaton that has
been studied extensively is the "Game of Life," developed by John Conway.
In the Game of Life, the local rule states that a cell "dies" (gets a value of
zero) unless two or three of its neighbors are alive (have a value of one) . If two
neighbors are alive, then the value of the cell site is unchanged. If three
neighbors are alive, the site always takes on the value one.

- Jractal }Vl.ania

Depending on the initial configuration, various static equilibrium states, such
as squares or hexagons, have been found. Oscillating or periodic segments
can exist, as can "traveling"or "glider gun" states where cell configuration
moves across the cell field and can be regenerated indefinitely.

The program LIFE.PAS on your disk is an implementation of the Game of Life.
I have made the traditional assumption that if the number of live cells around
a given cell is greater than 3, then the cell dies of overcrowding-. The program
was not difficult to write, but would be tedious to describe. If you 're
interested, I encourage you to look at the code and modify procedure r u l e to
create an organism that behaves according to another rule.

Run the program. It will ask you for a file containing the initial configuration
of the cell system. File TEST on your disk contains a sample configuration
file. To change initial configurations, modify this file using an ASCII-based
editor3. When prompted, input a large number of iterations (say 1000) and
watch the little universe evolve.

A second implementation of Life is also on your disk. This program
LIFE2.PAS generates a random starting configuration. The program requests
the number of iterations to run. Be generous; several hundred is good. Once

* ** •••••••••• ••••••••••••••••••••• ** •• * ** *** * * **
* *** * * * ** * • • • ••• • • *** • •

• • •• • * * * ••• * •• * ••••••• * • * * * ** * • •
* ** * * ** •• • ••••• ** ** ** ** * •

* * ** *
* ** * **

* *
* ** *

* * * •
•• * •• ** * **

•• * • • • •
• • ** * * * ** * * * * *

••• ** ** ** *

* * * * * ** *. * •• * •••• *
* ••••

* ** *
* * ••

* **
* * *

* * ** •

• •• * •• •
•••••••••

* * * • • •
•
• * * * * * •• *

•• ** ** ** • •
••••• * * * •• * * *

•

• •
•

• *

•
* * * * * * *. * * * •• * • •

• ** ** ** *

* * * * ** * ******
* *

••• *
*

* * *
*

* *
* •• *

* * * *

** •• * •••
•• * ** ** * ••

•• • • • • •
**. * * •• * * ** ••

* ** • ** • •• • *

• • * ** ** •• * • •
* • ** • * * ** * * * * *

* •• ** ** ** *

* * * * * * ** *
• ••••••• * •

. .
* * * * * * ** •• * ** ••• ** ••• ** * * *

* * * ** * * • • • • •
* * * * * * * ** * * •

* ** ** •••
• • • * ** *

** •• * ** • • * • ** •• ** *

* •
* * * *

• * •
• •

• *
* * ** * ** •• * ** • • ••• * * ••• * •••

* •••••••• *
* * * * * *

* * ** • * * • • • • *. *. **. * ** •• * * * *
* • •• * •• *

* * •• ** ••• **
•
•• * * • * ** *

** ** ** ** * •
*. * ** * * * ** * * *

•
• •

•
• •

• • • • •
* *

•

*
* *

* •
* **.

•• •

• • •
• •

* ** •• ** •
• * * * ** * • * * * * * * *

•• ** •
• * ** * ** •• * **

• • • • • *
* * * ** * *

• ** * ** • •

••• ** ** ** • • *
* • ** * * * ** * *. * •

• ** •••••• *
* •• * •• ** *

** •• ** ** * * *

•
• •

*
* * ** ** * ** * * * ** * * * •••• * • • * *

* • *
* * ** * *

• • •
•

* •• ** ** *
* * * * ** *

* ** * ** * * * • ** ** ** *

* *
* * * *

* • • *

*

* *
*

* ** * ** • • ** * * * ** * * *. *
* ** ** ** ** •

* * * * * *
• • • • •

* ** * *
• ** *

• * * * • * ** *

** ** ** ** *

* •
* * * * • •

•
• * ** • * * ** • * * **. * *

* ** ** ** *

•
• •

•
• • * * * *

• * * *
* •••••• * * *

••• * • * • ** ** ** * • •

• * * * • •
* * * * * * * * * * * *

• *

•
• •

• *

*
* * * ** * * • ** * * * * * * * * * * *

• * •

•
• •

• ** ** ** ** *
* * * • * * ** *

•• ** ** ** * • •

•
• •

• •
*

• •
• •

*
• *

•

• •

• •

• •
•

• •

* * * * ** * * * ** *. *
* ** ** ** *

* * * * * * * * * * * *
• * • • • •

• • • • ••• * * * * •

4-8
Sample output from the
CELL2Pl-1S program.

Simulated fractals dt chaos Iii

- J-ractal jYlania

input, the cell world will mutate and evolve. Look for stable configurations
such as squares and circles, and bi-stable configurations called "blinkers,"
which alternate between two states. Other configurations of cells will appear
to walk across the screen. Still others will split or join. It really is a fascinating
program to watch.

'furbo Pascal
graphics

For those of you who are interested in modifying or writing fractal programs
using Turbo Pascal graphics, the following discussion is about the graphics
screen of your computer. A typical color graphics screen is organized in an
array of picture elements or pixels capable of displaying one or more colors.
The quality (and cost) of your monitor is dependent upon, among many
things, the density of the pixels (called the resolution) and the number of
colors that each pixel is capable of displaying.

For example, most low-cost enhanced graphics adapter (EGA) color monitors
consist of a 640 x 480 array of pixels that can display in 16 different colors.
The first number, 640, represents the number of columns of pixels, whereas
480 is the number of rows. Low-cost video graphics adapter 0/GA) monitors
have a similar configuration. 811per VGA monitors often have 1280 x 1024
pixel arrays that can display in 256 colors. Higher-quality and more expensive
monitors also exist.

Regardless of the resolution and number of colors your monitor supports, the
upper left-most pixel has coordinate (0,0), and the lower right-most pixel has
coordinate (MaxX, MaxY) where MaxX is the number of pixel columns and
Max Y is the number of rows. Since you're interested in mapping this screen
into the complex plane so that coordinate (0,0) is at the center of the screen
(see FIG. A-1), you need to devise an algorithm to do this.

"Curbo Pascal graphics Ill

A-1
Mapping the screen

coordinate Sijstem onto
the complex plane.

- 1'1.ppendix 1'I.

(0,0)---11►~(zoom.zoom)

(0,MaxY)

(MaxX,0)

(0,0) of
complex

plane

(Max X,Max Y) ---i►► (zoom, -zoom)

Suppose you want to map the screen with the upper left-hand coordinate
(0,0) and the lower right-hand coordinate (MaxX, MaxY) onto a square section
of the complex plane. The plane has the center coordinate (0,0), the upper
left-hand comer coordinate (-zoom, zoom), and the lower right-hand comer
coordinate (zoom, - zoom), were zoom is some arbitrary constant. To do this,
use the transformation for the x-coordinate:

2 • zoom f (x) = x--- - zoom
MaxX

The transformation for the y-coordinate is:

2 • zoom
g(y) = -y MaxY + zoom

Can you see that these transformations map the point (0,0) into the point
(f(0), g(O)) = (-zoom.zoom) and the point (MaxX, MaxY) into the point
(f(MaxX), g(MaxY)) = (zoom,-zoom) as desired?

(Al)

(A.2)

Since on most screens Max X and Max Y are unequal, stretching a picture along
these directions in these proportions would result in distortion (in technical
jargon, the aspect ration would have changed). To prevent distortion, then, you
pull in both directions equally, generally choosing Max X as the zoom factor
because it's larger than Ma x Y. This will result in a loss of information on the
right-hand side of the screen (an important behavior known as clipping).

Stretching in both directions by Ma x Y will prevent clipping but will result in an
image that doesn't completely fill out the horizontal space.

The code supplied with this book is designed to run on any EGA er VGA type
monitor. (Some other monitors, such as those with the older, CGA technology
might also work.) The code takes into account Ma xX and Ma xY and the
number of colors that can be displayed by these monitors.

Let 's look at a piece of code that appears in virtually all of the programs and
is used to set up the Turbo Graphics environment. The first line in almost
every program that uses graphics has the code:

uses
Crt , Com pl ex ,Grap h;

This is a Pascal statement that declares that the units C rt, Comp l ex, and
Graph are going to be used. Unit C rt is a standard Turbo Pascal unit that
provides nongraphics screen utilities such as Cl r Sc r , which clears the
screen. Unit Comple x is a unit that I wrote. It contains the complex function
routines you need to generate Julia and Mandelbrot sets. Unit Gra ph is a
standard Turbo Graphics unit that provides the routines to display graphics.

The next code is common to all graphics routines and contains the variable
declarations that are needed to call the Gr a p h unit and to do the overall
scaling. These variables are:

Grap hDriver
GraphMode
Er rorCode
MaxY
zoom
scale
x,y
MaxColor

: integer:
integer:
integer :
integer :
real :
real :
real ;
integer ;

Sto res grap hics dr i ver num ber}
Stores graphics mode for driver }
Reports any error condition}
Maximum Y screen coordina t e}
overall zoom factor }
scale factor }
i ntermediate variables
maximum number of colors on gra ph ics card }

I've included the comments associated with these variables, as they are self
descriptive.

The next important phase in using graphics is to detect the type of monitor
that the code is going to run on. To this effect, you'll see the code:

Grap hDriver : = Detect; (try to detec t graphics card}
Ini t Graph(GraphDriver , Grap hMode ," l : (init i alize gra phi cs}
ErrorCode : = Grap hResul t:
if ErrorCode <> grOk the n {check for error}
beg i n

Wri t el n(' Grap hics error : '. Grap hErro rM sg(Er rorCodel l :
Writeln(' Graphics card not found ') ;
Wri tel n(' Prog r am aborted' l :
Halt(l)

end :

(Jraphicsin
the programs

'turbo Pascal graphics Bl

m AppendixA

The first line detects the type of graphics driver (for example, EGA or VGA)
and stores it in variable Gr a p h Dr i v e r . The second line initializes the
graphics mode so that it's compatible with the graphics driver. The next
seven lines take care of any errors during graphics initialization. If there's a
problem, such as no graphics capability, the program will immediately halt.
This indicates that either your monitor doesn't have graphics capability or it's
damaged in some way. In this case, refer to your computer owner 's manual.

Later in the code, you'll find:

MaxColo r : = Ge tM axColor; f ind max i mum num ber of colors }
MaxY : = GetMaxY ; fi nd max i mum Y screen coordina t e
scale: = 2.0*zoom/MaxX; calcula t e zoom fac t or}

The first line reads the number of colors that your system is capable of
displaying. Remember that this will also be used as the iteration limit for
calculating Julia and Mandelbrot sets.

The second line senses the maximum y-coordinate. Since, in general, the y
coordinate is always less than the x-coordinate, you use they-coordinate as
both the maximum x- and y-coordinate to be displayed. While this chops the
screen off to the right, it prevents distortion of the images. See the previous
discussion on aspect ratio for more details.

The last line is the scale factor needed to perform the calculations in
equations A.1} and A.2. The scale factor s ca l e is used in conjunction with
variable zo om, which is a user input, to complete the coordinate
transformation. That is:

x : = scale*i - zoo m;
y : = zoom - sca l e*j ;

That will implement equations A.1 and A.2.

The final statement that appears in the programs using graphics is:

putpixel(i , j , color) ;

That statement activates the pixel at row i and column j, with color given
by the variable col o r. The variable col or will either be a 1 (which is
generally dark blue) if a filled image was chosen, or will be based on the
number of iterations before escape (variable i t e r) if an unfilled image was
selected by the user.

program amoeba;

Program
listings

I compute and display an "amoeba" from the Julia set of

f(z) = zA2 + .3 - .4i

12 - 21 - 92 Phil Laplante
uses

Complex, Graph;

const
zoom= 2.0;
attract= 0.0001;

var
GraphDriver
GraphMode
ErrorCode
i ' j
MaxY
scale
mag
iter
continue
x,y
MaxColor

begin

: integer;
integer;
integer;
integer;
integer;
real ;
real ;
integer;
boolean;
real ;
integer;

include graphics and complex routines)

create 4 by 4 window)
attractor sensitivity l

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum Y screen coordinate)
scale factor J
square of magnitude of complex number }
escape iteration counter }
continue iteration counter J
real and complex parts of z }
maximum number of colors on graphics card J

Program listings El

(initialize graphics l

GraphDriver : = Detect; (try to detect grap hics card}
lnitGraph(GraphDriver,GraphMode,"); (initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then (check for error}
begin

Writeln('Graphics error:', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n('Program aborted ');
Halt(l l

end;
MaxColor
MaxY :

GetMaxColor;
GetMaxY;

scale:= 2.0*zoom/MaxY;

find maximum number of colors }
find maximum Y screen coordinate
calculate zoom factor}

for i : 0 to MaxY do MaxY is usually smaller than MaxX }
begin

for j = 0 to MaxY do
begin

x : = seal e•i - zoom;
y : = zoom - scale•j;
continue : = TRUE;
iter : = 0;
while continue= TRUE do
begin

mult(x,y,x,y,x,y);
add(x,y,0.3,-0.4,x,y);
mag : = x•x + y•y;
if mag< attract then

continue : = FALSE
else

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

square z }
add 0.3 - 0.4i
calculate square of magnitude

point is an attractor l

if (mag< 100) AND (iter < MaxColor•2) then (keep iterating function }
iter = iter + 1

else
begin

putpixel(i,j, iter
continue : = FALSE

end
end while loop}

end {j loop}
end{ i loop}

end.

program bifur;

point escapes, plot it

div 2);
{ get out of loop I

(compute and display bifurcation diagram for

12 - 21 - 93 Phil Laplante

lfl Appendix6

uses
Crt,Graph;

var
GraphDriver
GraphMode
ErrorCode
i • j
MaxX
MaxY
X

C

MaxColor
scale
sf

begin

ClrScr:

: integer;
integer:
integer;
integer:
integer:
integer:
real :
real :
integer:
real :
real :

{ include CRT and graphics routines}

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum X screen coordinate)
Maximum Y screen coordinate)
iterated value)
constant of iteration
maximum number of colors on graphics card l
plotting scale factor l
user input scale factor l

(get user input scale factor J

write(' input scale factor (1 - 10) ');
readln(sf):

(initialize graphics l

GraphDriver := Detect; (try to detect graphics card)
InitGraph(GraphDriver,GraphMode,": {initialize graphics}
ErrorCode := GraphResult;
if ErrorCode <> gr0k then (check for error)
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted'):
Halt(l)

end;
MaxColor := GetMaxColor:
MaxX GetMaxX:
MaxY := GetMaxY:

scale := sf•MaxX/8;

C := - 2.0;
for i := 1 to MaxX do

begin
X := 0 .0;
c := c + 2.25/MaxX;
for j := 1 to 200 do
begin

X : = X*X + C;

find maximum number of colors l
find maximum X screen coordinate
find maximum Y screen coordinate

calculate overall scale factor l

set starting point l

calculate orbit about x=0
iterate c l
calculate orbit after 200 iterations}

if j> 50 then { skip first 50 iterations l
begin

putpixel(i,round(MaxY/2 + x•scale), j div MaxColor):
end

Program listings m

end
end

end.

program Cantor_set;
{ Produce Cantor set using recursion

12 - 20 - 92 Phil Laplante

uses
Graph;

var
GraphDriver
GraphMode
ErrorCode
MaxX

: integer ;
integer;
integer;
integer;

{include graphics package)

(Stores graphics driver number)
(Stores graphics mode for driver)
{Reports any error condition}
{Maximum X coordinate)

procedure Cantor(xl, yl, x2, y2 : integer);
{ Applies middle third algorithm to segment of real line)
var

delta : integer;
begin

end;

line(xl, yl, x2, yl);
yl :=yl+l6;
if yl <=128 then
begin

delta := (x2 - xl) div 3;
Cantor(xl, yl, xl + delta, yl);
Cantor(x2 - delta, yl, x2, yl);

end;

begin
GraphDriver : = Detect;
InitGraph(GraphDriver,GraphMode,"");
ErrorCode : = GraphResult;
if ErrorCode <> grOk then
begin

{one third of line segment J

{increment y coordinate}
{don't do to far)

{calculate quarter of line segment l
{draw first third}
{draw third third}

{try to detect graphics card)
{initialize graphics)

{check for error}

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n('Program aborted ');
Halt(1)

end;

MaxX := GetMaxX;

Cantor(0,8,MaxX,8);
end.

Ell ;tlppendix lj

{ start Cantor set at row 8}

Redwood forest.

Ii forest of rcmdom/0
generated fractal

trees.

;em leaf

Computer-generated
equivC1!ent of Cl
swC1mp pond.

7rnctal rocks using
the same /75 codes

as fractal c/ow:ts.

yreen seaweed

'lhe Mandelbrot set.

Castle.

Ii filled Mandelbrot set.

'Che ']ulia set of sin (z).

Douad1/s mbbit.

Dmgo11.

Dendrite structure generated
bij f (z) = Z2 +i

;our-petaled flower from the
'Julia set of f(z) = z 2 + 0.384.

f3ifurrntion diagram for f (x) = x2 + c with x = 0 and various values of c produced using t3FJIARPAS.

f3ifurrntion diagram for a model economic s0stem.

program carpet:
(compute and display Sierpinski carpet

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph:

var
GraphDriver
GraphMode
ErrorCode
X, y
i
k
MaxY

Phil Laplante

{include graphics package)

: integer: Stores graphics driver number)
integer: Stores graphics mode for driver)
integer: Reports any error condition)
real: pixel coordinates l
integer: loop counters)
integer: row selector l
integer: maximum X and Y coordinates)

d array[l. .8,1. .6] of real: (holds data of IFS attractor l

begin
GraphDriver : = Detect: (try to detect graphics card)
InitGraph(GraphDriver,GraphMode,"J: (initialize graphics)
ErrorCode : = GraphResult:
if ErrorCode <> gr0k then {check for error)
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)):
Writeln('Graphics card not found'):
Writeln('Program aborted'):
Halt(l)

end:
MaxY : = GetMaxY: (get screen limits l

initialize IFS data array)

d[l. 1]: =0.33; d[l.2]: =0; d[l,3]: =0: d[l ,4]: =0.33; d[l. 5]:
d[2,l]: =0.33: d[2,2]: =0: d[2,3J: =0: d[2,4J: =0.33; d[2,5]:
d[3,1J: =0.33; d[3,2J: =0; d[3,3J: =0: d[3,4J: =0.33; d[3,5J:
d[4,1J: =0.33; d[4,2J: =0; d[4,3J: =0; d[4,4J: =0.33; d[4,5]:
d[5,l]: =0.33; d[5,2J: =0; d[5,3J: =0: d[5,4J: =0.33: d[5,5J:
d[6,1J: =0.33: d[6,2J: =0: d[6,3J: =0: d[6,4]: =0.33: d[6,5J:
d[7,1J: =0.33: d[7.2J: =0: d[7,3]: =0: d[7,4]: =0.33: d[7,5J:
d[8,l]: =0.33: d[B,2]: =0: d[B,3]: =0: d[8,4J: =0.33: d[8,5]:

MaxY : = GetMaxY;

randomize: (initialize random number generator)

X

y
0;
0:

(set starting coordinates)

for i 1 to 30000 do
begin

k : = random(8) + 1: (pick random row l

=l: d[l. 6]: =l;
=MaxY; d[2,6J: =l;
=l; d[3,6J: =MaxY;
=MaxY; d[4.6]: =MaxY;
=MaxY div 2; d[5.6J: =l;
=MaxY; d[6,6J: =MaxY div 2:
=l: d[7,6J: =MaxY div 2;
=MaxY div 2: d[8,6J: =MaxY:

Program listings 111

x : = d[k.l]•x + d[k,2J•y + d[k,5]; transform coordinates }
y : = d[k,3J•x + d[k,4J•y + d[k,6] ;
if i > 10 then skip first 10 iterations

putpixel(round(2•x/3),round(2•y/3),WHITE)
end

end.

program castle:
{ compute and display "castle" fractal

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

Phil Laplante

{include graphics package}

var
GraphDriver
GraphMode
ErrorCode
X, y

: integer; Stores graphics driver number}

k
MaxY
d

begin

integer; Stores graphics mode for driver}
integer; Reports any error condition)
real: pixel coordinates J

integer; loop counters)
integer; row selector J
integer; Maximum Y screen coordinate)
array[l. .4.1 .. 6] of real; I holds data of IFS attractor J

GraphDriver := Detect; {try to detect graphics card)
InitGraph(GraphDriver.GraphMode,""); {initialize graphics)
ErrorCode := GraphResult;
if ErrorCode <> gr0k then (check for error)
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found ');
Writeln('Program aborted');
Halt(1)

end;

MaxY := GetMaxY;

initialize IFS data array

d [1. 1 J : =0 . 5 ;
d[2,l]:=0.5;
d[3,1J:=0.4;
d[4,1J:=0 . 5;

d [1. 2 J: =0:
d[2,2J:=0;
d[3,2J:=0;
d[4,2J:=0;

d [1, 3 J: =0;
d[2,3]:=0;
d[3,3J:=0;
d[4.3]:=0;

d [1. 4 J : =0 . 5 ;
d[2,4J:=0 . 5;
d[3,4]:=0.4;
d[4,4J:=0.5;

d[l,5]:=0; d[l,6]:=0;
d[2,5]:=2; d[2,6]:=0;
d[3,5J :=0; d[3.6J:=l;
d[4,5]:=2; d[4,6]:=l;

randomize; {initialize random number generator)

X := 0; (set starting coordinates)

1111 AppendixrJ

y := 0;

for i := 1 to 32000 do
begin

k random(4) + 1:
x := d[k,l]•x + d[k,2]•y + d[k,5];
y := d[k,3]•x + d[k,4J•y + d[k,6];

pick random number from 1-4)
transform coordinates }

if > 10 then skip first 10 iterations
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),YELLOW)

end { scale for screen }
end.

program celll;
{ Simulate One - dimensional cellular automata

1/29/93 Phil Laplante }

uses
Crt;

canst
columns
rows
cell

type

80;
24;
I* I ;

{ unit for CRT driver }

number of columns on screen
number of rows on screen }
eel l symbol }

eel l field array[l .. columns] of boolean; { "playing field" }

var
cells
initcell

procedure init;

cell_fiel d:
string;

playing field for experiment
input cell configuration }

{ initializes the cell configuration space (the "playing field") }
var

i , j
begin

integer;

for j : = 1 to columns do
cells[jJ : = FALSE; { initialize cell space l

end;

{ ---

procedure display;
{ displays line of cells to screen l
var

i ,j : integer;

begin

Program listings Iii

begin

end
end;

for j: = 1 to columns do
if cells[j] = TRUE then

write(cell)
else

write(' ');

cell in space l

no cell in space

{ -- ---- --

procedure load;
{ load initial cell file into array of cells l
var

i,j: integer:

begin

end;

ClrScr: clear screen - l
writeln('Input initial cell configuration ');
readln(initcell);
i nit; initialize cell space l
for j : = 1 to length(initcell) do

if initcell[j] cell then
cell s[j J : = TRUE { live cell in space l

{ -------------- --

procedure rule;
{ apply one dimensional cellular automata rule for one iteration.

note that the first and last cells in a row are omitted

var
oldcells : cell_field;
i ,j : integer;
aml,aO,al : boolean;

holds copy of old cell field l

left, current and right cells l
begin

end;

for j : = 1 to columns do
oldcells[jJ : = cells[j]; remember old cell configuration l

init; initialize next configuration

for j : = 2 to columns - 1 do omit boundary cells l
begin

aml oldcells[j - l];
aO oldcells[jJ:
al oldcells[j + l];
cells[j] : = (aml AND NOT aO AND NOT al) OR (NOT aml AND al) OR (aO AND al)

end

{ -- - --------------- - ------ begin program----- - - - ----- - ---------- }

- Appendix lj

var
i : integer;
iter : integer; { number of iterations for simulation)

begin

end.

load;
display;
write('Enter number of iterations for simulation ');
readl n (iter);
write('Press Enter to Begin Simulation ');
readln;
ClrScr;
display;
for i : = 1 to i ter do
begin

rule;
display

end

clear screen)
display starting configuration)

apply rule to cell field
display updated universe

program cell2;
{ Simulate a self-organizing one-dimensional cellular automata

1/29/93 Phil Laplante)

uses
Crt;

canst
columns
rows
cell

type
cell field

var
cells
initcell

80;
24;
I* I ;

{ unit for CRT driver)

number of columns on screen
number of rows on screen)
eel l symbol)

array[l .. columns] of boolean; { "playing field")

cell_field;
string;

playing field for experiment
input cell configuration)

{-- ----- ---------

procedure init;
{ initializes the cell configuration space (the "playing field"))
var

i 'j
begin

end;

integer;

for j : = 1 to columns do
cells[j] : = FALSE; { initialize cell space)

Program listings -

{ ---- ---------- ---- --

procedure display;
{ displays line of cells to screen }
var

i,j: integer;

begin
begin

for j : = 1 to columns do
if cells[j] = TRUE then

write(cel l l
else

write(' ');
end

end;

cell in space }

no cell in space

{ --

procedure load;
{ load initial cell file into array of cells }
var

i ,j : integer;

begin
ClrScr; clear screen
writeln('Input initial cell configuration ');
readln(initcell);
i nit; initialize cell space }
for j : = 1 to length(i nitcell l do

if initcell[j] cell then
cells[j] : = TRUE { live cell in space l

end;

{ --

procedure rule;
{ apply one dimensional cellular automata rule for one iteration.

note that the first and last cells in a row are omitted

var
oldcells : cell_field;
i , j : integer;
aml,aO,al : boolean;

begin
for j : = 1 to columns do

oldcells[jJ : = cells[jJ ;

i nit;

for j 2 to columns - 1 do

El Appendix !J

holds copy of old cell field l

left, current and right cells }

remember old cell configuration

initialize next configuraion

omit boundary cells l

begin
aml oldcells[j - l];
aO oldcells[j] ;
al oldcells[j + l];
ce l ls[j] : = (aml AND NOT aO and NOT al) OR (NOT aml AND al)

end
end;

{ ------------------- - --- - - begin program -- --------------------- - - l

var
i : integer;
i ter : integer;

begin
load;
display;

{ number of iterations for simulation)

write('Enter number of iterations for simulation ');
readln(iter);
write('Press Enter to Begin Simulation ');
readln;

end.

ClrScr;
display;
for i : = 1 to i ter do
begin

rule;
display

end

program cloud;

clear screen l
display starting configuration)

apply rule to cell field
display updated universe

{ compute and display Julia set of function
f(z) = zA2 - 0.194 + 0.6557i

1 - 2 - 92 Phil Laplante
uses

Complex. Graph;

canst
zoom=l.5;
attract=0.0001;

var
GraphDriver
GraphMode
ErrorCode
i • j
MaxY
scale
mag

: integer;
integer;
integer;
integer;
integer;
real ;
real ;

{ include graphics and complex routines)

create 3 by 3 window l
attractor sensitivity l

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum Y screen coordinate}
scale factor l
square of magnitude of complex number l

Program listings IJI

iter
continue
x,y
MaxColor

begin

integer:
boolean:
real :
integer:

escape iteration counter l
continue iteration counter l
real and complex parts of z l
maximum number of colors on graphics card l

{ initialize graphics l

GraphDriver : = Detect: {try to detect graphics card)
InitGraph(GraphDriver,GraphMode, ''): {initialize graphics)
ErrorCode : = GraphResult:
if ErrorCode <> grOk then {check for error)
begin

end:

Writeln('Graphics error: ·• GraphErrorMsg(ErrorCode)):
Writeln('Graphics card not found');
Writel n('Program aborted·):
Halt(!)

MaxColor GetMaxColor: find maximum number of colors l
find maximum Y screen coordinate
calculate zoom factor)

MaxY : GetMaxY:
scale: = 2.0•zoom/MaxY:

for i : 0 to MaxY do MaxY is usually smaller than MaxY l
begin

for j = 0 to MaxY do
begin

x : = scale•i - zoom:
y: = zoom - scale•j;
continue : = TRUE:
iter : =0:
while continue= TRUE do
begin

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

mult(x,y,x,y,x,y); { square z l
add(x,y,-0.194,0.6557,x,y); add constant
mag : = x•x + y•y;
if mag< attract then

continue : = FALSE
else

{ calculate square of magnitude

point is an attractor l

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function l
iter = iter + 1

else point escapes, plot it l
begin

case iter div 2 of
WHITE: putpixel(i,j, LightGray);
YELLOW: put pixel (i , j, Da rkGray)

end:
continue : = FALSE

end
end while loop)

(get out of loop l

end {j loop)

m -Appendix rJ

end{ loop}
end.

program clouds2;
{ compute and display clouds

using Michael Barnsley's IFS algorithm

12 - 5 - 93 Frank D'Erasmo }
uses

Graph; {include graphics package}

var
GraphDriver
GraphMode
ErrorCode
X, y

: integer;
integer;
integer;
real ;
integer;
integer;

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
pixel coordinates }
loop counters}

k row selector }
MaxY integer; Maximum Y screen coordinate}
d array[l .. 4,1. .6] of real; { holds data of IFS attractor l

begin
GraphDriver: = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found') ;
Wri tel n('Program aborted');
Halt(l)

end;

MaxY : = GetMaxY;

initialize IFS data array

d[l. l]:
d[2,l]:
d[3,1J:
d[4,1]:

randomize;

X

y
0;
0;

for i
begin

k
X :

0.5; d[l.2]: = O; d[l,3]: = O; d[l,4]: = 0.5; d[l,5]: = O; d[l,6]: = O;
0.5; d[2,2]: = O; d[2,3]: = O; d[2,4]: = 0.5; d[2,5]: = 2; d[2,6]: = 0;
-0 .4; d[3,2]: = O; d[3,3]: = l; d[3,4J: = 0.4; d[3,5J: 0; d[3,6]: l;
-0.5; d[4,2J: = 0; d[4,3]: = O; d[4,4]: = 0.5; d[4,5]: = 2; d[4,6]: = 1;

{initialize random number generator}

{set starting coordinates}

1 to 32000 do

random(4) + 1;
d[k,l]•x + d[k,2J•y + d[k,5];

{ pick random number from 1-4)
{ transform coordinates l

Proqram listings -

y : = d[k,3J•x + d[k,4J•y + d[k,6];
if i > 10 then I skip first 10 iterations

putpixel(round(MaxY•x/2).MaxY - round(MaxY•y/2),WHITEl
end; { scale for screen }

end.
unit complex;

interface
procedure add (xl. yl, x2. y2 real ; var x3. y3
procedure sub (xl, yl, x2. y2 real ; var x3, y3
procedure mult(xl, yl. x2. y2 real ; var x3, y3
procedure cdiv(xl, yl, x2. y2 real; var x3. y3
function cosh(x : real l : real ;
function sinh(x : real) : real ;
procedure csin(x,y real ; var xl. yl : real l;
procedure ccos(x,y real ; var xl. yl : real);
procedure cexp(x,y real ; var xl, yl : real l;

implementation

procedure add (xl. yl, x2. y2 : real; var x3, y3
{ calculates z3 = zl + z2 where:

zl xl + iyl;
z2 x2 + iy2;
z3 x3 + iy3;

begin
x3 xl + x2;
y3 yl + y2

end;

procedure sub (xl. yl, x2. y2 : real; var x3. y3
I calculates z3 = zl- z2 where:

zl xl + iyl
z2 x2 + iy2
z3 x3 + iy3

begin
x3 xl - x2;
y3 := yl - y2

end;

procedure mult(xl. yl, x2. y2 : real; var x3. y3
I calculates z3 = zl • z2 where:

zl xl+iyl
z2 x2 + iy2
z3 x3 + iy3

begin
x3 xl•x2 - yl•y2;
y3 := yl•x2 + xl•y2

- AppendixrJ

real); complex addition
real l; complex subtraction
real); complex multiplication

: real l; { complex division
{ hyperbolic cosine
{ hyperbolic sine
{ complex sine
{ complex cosine
{ complex exponentiation

real l;

real l;

real);

}

}

}

}

end;

procedure cdiv(xl, yl, x2, y2 : real; var x3, y3
{ calculates z3 = zl / z2 where:

zl xl+iyl
z2 x2 + iy2
z3 x3 + iy3

var
denom real ;

= x2•x2 + y2•y2;
begin

denom
x3 (xl•x2 + yl•y2)/ denom;

: = (x2•yl- xl•y2)/ denom y3
end;

{ denominator }

real part
imaginary part

real l;

function cosh(x : real l : real; { calculates cosh(x) l
begin

cosh : = (exp(xl + exp(-xl)/2.0
end;

function sinh(x : real) : real; { calculates sinh(xl }
begin

sinh : = (exp(x) - exp(-x))/2.0
end;

procedure ccos(x, y : real; var xl, yl
calculates z = cos(x + iy) where:
xl is real part of z
yl is imaginary part of z

begin
xl
yl

end;

cos(x)•cosh(y);
- sin (x l •sin h (y l

procedure csin(x, y : real; var xl, yl
calculates z = sin(x + iy) where:
xl is real part of z
yl is imaginary part of z

begin
xl
yl

end;

sin(xl•cosh(y);
cos(x)•sinh(y)

procedure cexp(x, y : real; var xl, yl
calculates z = eA(x + iyl where
xl is real part of z
yl is imaginary part of z

begin
xl : exp(x)•cos(y);

real);

real) ;

real l;

Program listings -

yl : = exp(x)•sin(y)
end:
end. {unit complex}

program dendrite;
{ compute and display Julia set of function

f(z) = z"2 + i

1 - 2 - 92 Phil Laplante
uses

Complex. Graph; { include graphics and complex routines}

canst

var

zoom=2.0:
attract=0.0001 :

GraphDriver : integer:
GraphMode integer:
ErrorCode integer:
i . j integer;
MaxY integer:
scale real ;
mag real :
iter integer;
continue boolean;
x,y real :
MaxColor integer;

create 4 by 4 window}
attractor sensitivity }

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }
square of magnitude of complex number l
escape iteration counter l
continue iteration counter l
real and complex parts of z }
maximum number of colors on graphics card l

begin

{ initialize graphics }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult:
if ErrorCode <> grOk then {check for error}
begin

Writeln(' Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln(' Graphics card not found');
Wri tel n (' Program aborted'):
Halt(l)

end;
MaxColor GetMaxColor;
MaxY : GetMaxY:
scale: = 2.0•zoom/MaxY:

for i : = 0 to MaxY do
begin

El Appendix lj

find maximum number of colors }
find maximum Y screen coordinate
calculate zoom factor}

MaxY is usually smaller than MaxY l

for j : = 0 to MaxY do
begin

x : = scale•i - zoom;
y: = zoom - scale•j;
continue : = TRUE;
iter : =0;

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

while continue= TRUE do
begin

square z)
add 0 + i l

mult(x,y,x,y,x,y);
add(x ,y,0.0,1.0,x,y);
mag : = X*X + Y*Y; calculate square of magnitude
if mag< attract then

continue : = FALSE
else

point is an attractor)

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function)
iter = iter + 1

else point escapes. plot it
begin

putpixel(i ,j, iter div 2);
continue : = FALSE { get out of loop l

end
end while loop)

end {j loop)
end{ i loop)

end.

program dragon;
{ compute and display a "dragon" from the Julia set of

f(z) = zA2 + 0.360284 + 0. 100376i

12 - 21 - 92 Phil Laplante

uses
Complex, Graph;

const
zoom=2.0;
attract=0.0001;

var
GraphDriver
GraphMode
ErrorCode
i. j
MaxY
scale
mag
iter
continue

: integer;
integer;
integer;
integer;
integer;
real ;
real ;
integer;
boolean;

{ include graphics and complex routines)

create 4 by 4 window l
attractor sensitivity l

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition)
loop variables}
Maximum Y screen coordinate}
scale factor l
square of magnitude of complex number I
escape iteration counter I
continue iteration counter I

Program listings Iii

X, y
MaxColor

real ;
integer;

real and complex parts of z
maximum number of colors on graphics card }

{ initialize graphics

begin

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

end;

Writeln('Graphics error: ·. GraphErrorMsg(ErrorCodell;
Writeln('Graphics card not found'):
Wri tel n('Program aborted' l;
Halt(l)

MaxColor GetMaxColor; find maximum number of colors }
find maximum Y screen coordinate
calculate zoom factor}

MaxY : GetMaxY;
scale: = 2.0•zoom/MaxY;

for i : 0 to MaxY do MaxY is usually smaller than MaxX }
begin

for j = 0 to MaxY do
begin

x : = seal e•i - zoom:
y : = zoom - scale•j;
continue : = TRUE:
iter : =0:
while continue= TRUE do
begin

set starting value of real(zl
set starting value of imag(zl
assume point does not escape

mult(x,y,x,y,x,y); { square z }
add(x,y,0.360284,0.100376,x,y); { add constant l
mag : = x•x + y•y; { calculate square of magnitude
if mag< attract then

continue : = FALSE point is an attractor }
else

if (mag< 100) AND (iter < MaxColor•2) then (keep iterating function }
iter = iter + 1

else point escapes, plot it }
begin

putpixel(i,j, iter div 2);
continue : = FALSE { get out of loop }

end
end while loop}

end (j loop}
end(i loop}

end.

El ,Appendix rJ

program EKG;
{ compute and display a simulated "EKG" from the Julia set of

12 - 21 - 92 Phi 1 Laplante
uses

Complex, Graph;

const
zoom= 2.0;
attract= 0.0001;

var
GraphDriver
GraphMode
ErrorCode
i • j
MaxY
scale
mag
iter
continue
x,y
MaxColor

begin

: integer;
integer;
integer;
integer;
integer;
rea 1 ;
rea 1 ;
integer;
boolean;
rea 1 ;
integer;

{ initialize graphics l

include graphics and complex routines)

create 4 by 4 window)
attractor sensitivity l

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum Y screen coordinate}
scale factor)
square of magnitude of complex number)
escape iteration counter l
continue iteration counter)
real and complex parts of z J
maximum number of colors on graphics card }

GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Wri tel n(' Graphics card not found');
Wri tel n('Program aborted');
Halt(1)

end;
MaxColor
MaxY :

GetMaxColor;
GetMaxY;

scale: = 2 . 0•zoom/MaxY;

find maximum number of colors }
find maximum X screen coordinate
calculate zoom factor)

for i :
begin

for j
begin

0 to MaxY do MaxY is usually smaller than MaxX)

= 0 to MaxY do

x : = scale•i - zoom ;
y: = zoom - scale•j;
continue : = TRUE;
iter : =0;

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

Program listings -

while continue= TRUE do
begin

mult(x,y,x,y,x,y);
x: =x - 1.5;
mag : = X*X + Y*Y;

if mag< attract then
continue : = FALSE

else

{ square z }
{add- 1.5}
{ calculate square of magnitude

point is an attractor }

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function }
iter = iter + 1

else point escapes. plot it l
begin

if iter div 2 = MAGENTA then
putpixel(i,j, WHITE);

continue : = FALSE { get out of loop }
end

end while loop}
end {j loop}

end{ i loop}
end.

program fa 11;
{ compute and display cross fractal

using Michael Barnsley's IFS algorithm . Then generate
snow fall by generating many of them.

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y

i ' j
k
MaxX
d
scale
xpos,ypos

begin

Phi 1 Laplante

{include graphics package}

: integer; Stores graphics driver number}
integer; Stores graphics mode for driver}
integer; Reports any error condition}
rea 1; pixel coordinates }
integer; loop counters}
integer; row selector }
integer; maximum X screen coordinate}
array[l. .5 , 1. .6] of real; { holds data of IFS attractor }
real; { random scale factor}
integer; { tree position }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,"); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writel n(' Grap hi cs card not found');

B Appendix. rJ

end;

Writel n('Program aborted' l;
Halt(1)

MaxX : = GetMaxX; { get screen limits)

initialize IFS data array)

d[l.lJ: =0.33; d[l,2]: =0; d[l , 3]: =0; d[l ,4]: =0.33; d[l. 5]: =1; d[l.6]: =l;
d[2,1J: =0.33; d[2.2J: =0; d[2,3J: =0; d[2,4J: =0.33; d[2,5]: =MaxX; d[2,6J: =1;
d[3,1J: =0.33; d[3,2]: =0; d[3,3J: =0; d[3,4]: =0.33; d[3,5J: =1; d[3,6J: =MaxX;
d[4,1J: =0.33; d[4,2J: =0; d[4,3J: =0; d[4,4J: =0.33; d[4,5J: =MaxX;
d[5,l]: =0.33; d[5,2J: =0; d[5,3]: =0; d[5 ,4J: =0.33; d[5,5J: =MaxX div

MaxX : = GetMaxX;

randomize;

X

y

for j
begin

0;
0;

: = 1 to 150 do

{initialize random number generator)

{set starting coordinates)

make snow flakes l

xpos : = random(MaxX); pick flake position
ypos
scale

for i
begin

: = random(MaxX);
(random(5) +

1 to 800 do

k = random(5) + 1;

1)/250;

x : = d[k,l]•x + d[k,2]•y + d[k,5];
y : = d[k,3J•x + d[k,4J•y + d[k,6];

pick flake scale)

pick random row)
transform coordinates

if i > 10 then skip first 10 iterations
putpixel(round(scale•x + xpos),round(scale•y + ypos),WHITE)

end .

end
end

program fern;
{ compute and display fern

using Michael Barnsley's IFS algorithm

12 - 5 - 93 Phil Laplante
uses

Graph; {include graphics package)

var
GraphDriver
GraphMode
ErrorCode
X, y

: integer;
integer;
integer;
real ;

Stores graphics driver number}
Stores graphics mode for driver)
Reports any error condition)
pixel coordinates I

d[4,6J: =MaxX;
2; d[5,6J: =MaxX div 2;

Program listings El

integer; loop counter)
q integer; random number
k integer; row selector)
MaxY integer: Maximum Y screen coordinate)
d array[l. .4,1. .6] of real: { holds data of IFS attractor)

begin
GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode,' '): {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error)
begin

end:

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n('Program aborted');
Halt(l)

MaxY : = GetMaxY;

initialize IFS data array l

d[l,lJ:
d[2,1J:
d[3,1J:
d[4,1J:

O; d[l,2]: = O; d[l,3]: = 0; d[l,4]: =0.16; d[l,5]: = O; d[l,6] : = O;
0.85; d[2,2]: = 0.04; d[2,3]: = -0.04; d[2,4]: = 0.85; d[2,5]: = O; d[2,6]: =1 .6;
0.2; d[3,2J: = -0.26; d[3,3J: = 0.23; d[3,4]: = 0.22; d[3,5]: = O; d[3,6J: = 1.6;
-0.15; d[4,2J: = 0.28; d[4,3]: = 0.26; d[4,4J: = 0.24; d[4,5J: = O; d[4,6]: = 0.44;

randomize; {initialize random number generator)

X

y
0;
0;

{set starting coordinates)

for i 1 to 30000 do

end.

begin
q : = random(lOO) + 1;
if q < = 85 then

k : = 2;
if q = 86 then

k : = 1;
if (q > 86) AND (q < 94) then

k : = 3;
if (q > = 94) then

k : = 4;

pick random number from 1-100)
assign row according to)
probabi 1 ity)

x : = d[k,l]•x + d[k,2J•y + d[k,5]; transform coordinates)
y : = d[k,3J•x + d[k,4J•y + d[k,6];
if i > 10 then skip first 10 iterations

putpixel(round(MaxY/2 + MaxY•x/10),round(MaxY•y/10),GREEN)
end { scale for screen)

m AppendixrJ

Program fib;

finds the nth fi bo.r,acci number
11 - 24 - 92 Phil Laplante

function fibo(i:integer) : integer;
{ a recursive function)
begin

if i = 0 then
fibo : = 0

else
if i = 1 then

fibo = 1
else

fibo fibo(i - 1l + fibo(i - 2)
end;

var
n integer; { nth number in sequence)

begin
write('Enter n > 0 and less than 24 -> ');
readln(n);
writeln('f(',n,') = ',fibo(n))

end.

program flowerl;
{ compute and display a "rose" from the Julia set of

12 - 21 - 92 Phil Laplante
uses

Complex, Graph;

const
zoom= 2.0;
attract= 0. 0001;

var
GraphDriver
GraphMode
ErrorCode
i • j
MaxY
scale
mag
iter
continue
x,y

: integer;
integer;
integer;
integer;
integer;
real ;
real ;
integer;
boolean;
real ;

include graphics and complex routines)

create 4 by 4 window)
attractor sensitivity)

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum Y screen coordinate)
scale factor)
square of magnitude of complex number)
escape iteration counter)
continue iteration counter)
real and complex parts of z }

Program listings 11!!1

MaxColor integer; maximum number of colors on graphics card l

begin

{ initialize graphics l

GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode, ' '); {initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error)
begin

end;

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted');
Halt(l)

MaxColor GetMaxColor; find maximum number of colors l
find maximum X screen coordinate
calculate zoom factor}

MaxY : GetMaxY;
scale: = 2.0•zoom/MaxY;

for i :
begin

0 to MaxY do MaxY is usually smaller than MaxX l

for j
begin

= 0 to MaxY do

x : = scale•i - zoom;
y : = zoom - scale•j;
continue : = TRUE;
iter : =0;
while continue= TRUE do
begin

mult(x,y,x,y,x,y);
x: =x + 0.384;
mag : = x•x + y•y;
if mag< attract then

continue : = FALSE
else

{ set starting value of real(z) l
{ set starting value of imag(z) l
{ assume point does not escape l

{ square z l
{ add 0.384 l
{ calculate square of magnitude

point is an attractor l

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function l
iter = iter + 1

else point escapes, plot it l
begin

putpixel(i,j, iter div 2);
continue : = FALSE { get out of loop l

end
end while loop}

end {j loop)
end{ i loop}

end.

program flower2;
{ compute and display a "chrysanthemum" from the Julia set of

Ill Appendix rJ

f(z) = zA2 + .2541

12 - 21 - 92 Phil Laplante
uses

Complex, Graph; include graphics and complex routines}

canst

var

zoom= 2.0;
attract= 0.0001;

GraphDriver : integer;
GraphMode integer;
ErrorCode integer;
i' j integer;
MaxY integer;
scale real ;
mag real ;
iter integer:
continue boolean;
x,y real :
MaxColor integer;

create 4 by 4 window l
attractor sensitivity }

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }
square of magnitude of complex number l
escape iteration counter }
continue iteration counter }
real and complex parts of z }
maximum number of colors on graphics card l

begin

{ initialize graphics }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver , GraphMode, ' ') : {initialize graphics}
ErrorCode : = GraphResult:
if ErrorCode <> gr0k then {check for error}
begin

Writeln('Graphics error: ' , GraphErrorMsg(ErrorCode));
Writeln(' Graph i cs card not found'):
Wri tel n('Program aborted');
Halt(l)

end;
MaxColor
MaxY :
scale:

for i :
begin

for j
begin

GetMaxColor;
GetMaxY:
2.0•zoom/MaxY:

find maximum number of colors l
find maximum X screen coordinate
calculate zoom factor}

0 to MaxY do MaxY is usually smaller than MaxX }

= 0 to MaxY do

x : = scale•i - zoom;
y : = zoom - scale•j;
continue : = TRUE:
iter : = 0:
while continue= TRUE do
begin

mult(x ,y,x,y,x,y);

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

square z }

Program listings -

X: = X + 0.2541;
mag : = x•x + y•y;
if mag< attract then

continue : = FALSE
else

{add 0.2541)
{ calculate square of magnitude

point is an attractor }

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function }
iter = iter + 1

else point escapes, plot it l
begin

putpixelCi ,j. iter div 2);
continue : = FALSE { get out of loop l

end
end while loop}

end {j loop}
end{ i loop}

end.

program forest;
{ compute and display forest of trees

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y
i • j

q
k
MaxX
d
scale
xpos,ypos
crand
color

begin

Phil Laplante

{include graphics package}

: integer; Stores graphics driver number}
integer; Stores graphics mode for driver}
integer; Reports any error condition}
real; pixel coordinates l
integer; loop counters}
integer; random number l
integer; row selector l
integer; Maximum X screen coordinate}
array[l. .4,1. .6] of real; { holds data of IFS attractor }
real; { random seal e factor l
integer; { tree position l
integer; { pick random color (green, blue, yellow) }
integer; { random color value }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode. • '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error}
begin

Writeln('Graphics error: •. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n('Program aborted•);
Halt(l)

11!1 Appendix,:J

end:

MaxX : = GetMaxX:

initialize IFS data array }

d[l,l]:
d[2,1J:
d[3,l]:
d[4,l]:

0; d[l, 2]: 0; d[l,3]: 0; d[l,4]: 0. 5: d[l, 5]: = O;
0.42; d[2,2]: - 0.42: d[2,3J: 0.42; d[2,4J: 0.42: d[2,5J:
0.42: d[3,2J: 0.42; d[3,3J: - 0.42; d[3,4J: 0.42; d[3,5J:
0 .1; d[4,2]: O; d[4,3]: 0; d[4,4J: 0. 1: d[4,5J:

randomize: {initialize random number generator}

X

y
0;
0;

{set starting coordinates}

for j 1 to 150 do make 150 trees }

begin
xpos : = random(MaxX):
ypos : = random(MaxX):
scale : = random(3) + 1:
crand : = random(lO) + 1:
case crand of

0,1,2,3,4,5,6,7,8:
color GREEN;

9 color YELLOW:
10 color BROWN;

end;

for i : = 1 to 800 do
begin

q : = random(lOO) + 1:
if q < = 40 then

k : = 2;
if (q> 40) AND (q < 81) then

k : = 3:
if (q > = 81) AND (q < 95) then

k : = 4;
if (q > = 95) then

k : = 1;

X

y
d[k,l]•x + d[k,2]•y + d[k,5]:
d[k,3]•x + d[k,4]•y + d[k,6]:

pick tree position

pick tree scale
pick tree color

most trees are green }

some trees are yell ow }

some trees die }

800 pixels per tree }

pick random number from 1 - 100}
assign row according to }
probability l

{ transform coordinates }

if > 10 then { skip first 10 iterations }

end
end.

putpixel(xpos + round(x•MaxX/scale),round(ypos - y•MaxX/scale),color)
end

O;
O;
0;

d[l,6]: = 0:
d[2,6J: =0.2;
d[3,6J: =0.2;
d[4,6J : =0.2:

Program listings llill

program galaxl;
{ compute and display view of space using Michael Barnsley's

IFS algorithm.

12 - 5 - 93 Phil Laplante
uses

Graph; {include graphics package}

var
GraphDriver
GraphMode
ErrorCode
X, y
i • j

k
MaxX

: integer;
integer;
integer;
real ;
integer;
integer;

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
pixel coordinates }
loop counters}
row selector }

integer; maximum X and Y coordinates}
d array[l. .5,1. .6] of real; { holds data of IFS attractor }
scale
xpos,ypos

begin

real; { random seal e factor}
integer; { tree position }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error}
begin

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n ('Program aborted');
Halt(1)

end;
MaxX : = GetMaxX; { get screen limits }

initialize IFS data array }

d[l,l]: 0.33; d[l,2]: 0; d[l,3]: 0; d[l ,4]: 0.33; d[l.5]:
d[2,1J: 0.33; d[2,2]: 0; d[2,3]: 0; d[2,4J: 0.33; d[2,5J:
d[3,l]: 0.33; d[3,2J: 0; d[3,3]: 0; d[3,4J: 0.33; d[3.5J:
d[4,1J: 0.33; d[4,2]: 0; d[4,3]: 0; d[4,4]: 0.33; d[4,5]:
d[5,1]: 0.33; d[5,2J: 0; d[5,3J: 0; d[5,4J: 0.33; d[5,5J:

MaxX : = GetMaxX;

randomize; {initialize random number generator}

x 0; {set starting coordinates}
y 0;

for j 1 to 150 do make stars l
begin
xpos
ypos

random(MaxX);
random(MaxX);

pick star position

m Appendix. rJ

1; d[l. 6]: = 1 ·
MaxX; d[2,6J: = 1;
1; d[3,6J: = MaxX;
MaxX; d[4,6]: = MaxX;
MaxX div 2; d[5,6J: = MaxX div

scale

for i
begin

(random(5) + 1)/1000;

1 to 800 do

k random(5) + 1;
x : d[k, l]•x + d[k,2]•y + d[k,5];
y : d[k,3]•x + d[k .4]•y + d[k,6];

(pick star scale l

pick random row l
transform coordinates

if i > 10 then skip first 10 iterati ans
putpixel(round(scale•x + xpos),round(scale•y + ypos),WHITE)

end
end

end.

program julial;
(compute and display Julia set of cos z

12 - 21 - 93 Phil Laplante

uses
Complex. Graph; (include graphics and complex routines)

canst

var

zoom= 2.0;
attract= 0.0001;

GraphDriver : integer ;
GraphMode integer;
ErrorCode integer;
i. j integer;
MaxY integer:
scale real ;
mag real ;
iter integer:
continue boolean;
x. y real ;
MaxColor integer;

create 4 by 4 window l
attractor sensitivity l

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)
Maximum Y screen coordinate)
scale factor l
square of magnitude of complex number l
escape iteration counter l
continue iteration counter l
real and imaginary parts of z
maximum number of colors on graphics card l

begin

{ initialize graphics)

GraphDriver : = Detect; (try to detect graphics card)
InitGraph(GraphDriver.GraphMode,' '); {initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then (check for error)
begin

Wri tel n('Gr a phi cs error: '. GraphErrorMsg(ErrorCode));
Write l n ('Graphics ca rd not found');
Writeln('Program aborted');
Halt(l)

Program listings Im

end:
MaxColor : = GetMaxColor: find maximum number of colors l

find maximum X screen coordinate
calculate zoom factor)

MaxY : GetMaxY:
scale: = 2.0•zoom/MaxY:

for i :
begin

for j
begin

0 to MaxY do MaxY is usually smaller than MaxX)

= 0 to MaxY do

x : = scale•i - zoom:
y : = zoom - scale•j:
continue : = TRUE:
iter : =0:
while continue= TRUE do
begin

ccos(x,y,x,y);
mag : = X*X + Y*Y:
if mag< attract then

continue : = FALSE
else

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

calculate complex cosine
calculate square of magnitude

point is an attractor l

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function)
iter = iter + 1

else point escapes, plot it l
begin

putpixel(i,j, iter div 2):
continue : = FALSE { get out of loop)

end
end while loop)

end {j loop)
end{ i loop)

end.

program julia2:
{ compute and display Julia set of sine z

12 - 21 - 92 Phil Laplante

uses
Complex, Graph;

const
zoom= 2.0:
attract= 0.0001:

var
GraphDriver
GraphMode
ErrorCode
i . j
MaxY
scale

: integer:
integer:
integer:
integer:
integer:
real :

Ill Appendix rJ

{ include graphics and complex routines}

create 4 by 4 window}
attractor sensitivity)

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }

mag
iter
continue
X, y
MaxColor

real :
integer:
boolean:
real :
integer:

square of magnitude of complex number I
escape iteration counter J

continue iteration counter J

real and imaginary parts of z
maximum number of colors on graphics card I

begin
(initialize graphics l

GraphDriver : = Detect: (try to detect graphics card}
InitGraph(GraphDriver,GraphMode , ' '): (initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then (check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCodell:
Writel n(' Graphics card not found' l:
Writeln(' Program aborted '):
Halt(ll

end:
MaxColor GetMaxColor: find maximum number of colors J

find maximum Y screen coordinate
calculate zoom factor}

MaxY : GetMaxY;
scale: = 2.0•zoom/MaxY:

for i : 0 to MaxY do MaxY is usually smaller than MaxX l
begin

for j = 0 to MaxY do
begin

x : = scale•i - zoom;
y: = zoom - scale•j;
continue : = TRUE;
iter : = 0;
while continue= TRUE do
begin

csin(x,y,x,y);
mag : = X*X + Y*Y;
if mag< attract then

C'Ontinue : = FALSE
else

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

calculate complex sine
calculate square of magnitude

point is an attractor J

if (mag< 100) AND (iter < MaxColor•Zl then (keep iterating function J

iter = iter + 1
else

begin
putpixel(i,j, iter
continue : = FALSE

end
end while loop}

end {j loop}
end{ i loop}

end.

point escapes, plot it l

div 2);
(get out of loop J

Program listings 1111

program life;
{ Simulate Conway's Game of Life

1/29/93 Phil Laplante

uses
Crt; { unit for CRT driver)

const
columns
rows
eel l

type

80;
24;
I* I ;

number of columns on screen
number of rows on screen)
eel l symbol)

eel l field array[l .. rows,l . . columns] of boolean; { "playing field ")

var
Field
cells
oldcells
FileName
cell row

procedure init;

text;
cell_field;
cell_field;
string;
string[columns];

file containing initial universe)
playing field for experiment)
holds copy of old cell field)
name of initial universe l
row of cells)

{ initializes the cell configuration space (the "playing field "))
var

i ,j : integer;
begin

end;

for i : = 1 to rows do
for j : = 1 to columns do

cells[i,j]: = FALSE; { initialize cell space)

{ --

procedure display;
{ displays array of cells to screen)
var

i,j: integer;

begin
ClrScr;

for i : = 1 to rows do
begin

for j : = 1 to columns do
if cells[i ,j] = TRUE then

write(cel l) { eel l in space)
else

write(' '); no cell in space
end

1111 ·A.ppendix IJ

end;

{ ----------------- --- --

procedure load ;
{ load initial cell file into array of cells }
var

i ,j : integer;

begin

end;

write('lnput life file name');
readln(FileName);
assign(Field,FileName);

reset(Field);
i nit;
for i : = 1 to rows do

begin
readln(F i eld,cellrow);
for j: = 1 to length(cellrow) do

if cellrow[jJ = cell then
cells [i , j J : = TRUE

end;
close(Field)

open file for reading
initialize cell space

{ live cell in space

{ --------------- ---------------------------- -------------------

function count(i ,j:integer) : integer;
{ count number of cells in neighborhood
var

l ,m : integer;
sum: integer;
srow, erow integer;
scol, ecol : integer;

begin
sum : = O;

loop counters
running sum }
starting and ending row locations)
starting and ending column locations

initialize running sums

if i = 1 then find starting row)
srow - 1

else
s row - 1;

if i = rows then { find ending row)
e row rows

else
erow + l;

if j = 1 then { find starting column)
s col : = 1

Program listings 1111

else
scol j-1;

if j = columns then (find ending column J

ecol columns
else

ecol j + 1;

for l srow to erow do (count nearby eel ls
form:= scol to ecol do
if (iOl) OR (j<>m) then don't count self J

if oldcells[l ,m] = TRUE then
sum:= sum+ l;

count : = sum; (return sum J

end;

(- - - - -- ------ - ---

procedure rule;
(apply Game of Life rule

note that the first and last cells in a row are treated specially J

var
i ,j : integer; (local counters l

begin

end;

for i : = 1 to rows do
for j : = 1 to columns do

oldcells[i ,jJ : = cells[i ,jJ;

i nit;

for i : = 1 to rows do
for j : = 1 to columns do

case count(i ,j) of
0,1 cells[i ,j]
2: cells[i,j]
3: cells[i ,j]
4,5,6,7,8 cells[i,j]
end

remember old cell configuration)

initialize next configuration

(count nearby cells l
FALSE;
oldcells[i ,jJ;
TRUE;
FALSE { overcrowding J

{ -- -- ------ - --- -- -------- begin program- ---------------------- l

var
i : integer;
iter : integer;

begin
load;
write('File Loaded');
display;

(number of iterations for simulation)

write('Enter number of iterations for simulation');

II t'lppendbc (J

readln(iter);
write('Press Enter to Begin Simulation ');
readln;

end.

for i : = 1 to i ter do
begin

rule;
display

end

program life2;

apply rule to cell field
display updated universe

{ Simulate Conway's Game of Life - generates random starting configuration
1/29/93 Phi 1 Laplante

uses
Crt; { unit for CRT driver l

canst
columns
rows
cell

type

80;
24;
I* I :

number of columns on screen
number of rows on screen l
eel 1 symbol l

cell field array[l. .rows,l. .columns] of boolean; { "playing field" l

var
cells
oldcells
cell row

procedure init;

cell_fi el d;
cell_field;
string[columns];

playing field for experiment
holds copy of old cell field
row of cells l

{ initializes the cell configuration space (the "playing field") }
var

i,j: integer;
begin

end;

for i : = 1 to rows do
for j : = 1 to columns do

cells[i,j]: = FALSE; I initialize cell space l

{ --

procedure display;
{ displays array of cells to screen l
var

i ,j : integer;

begin

Program listings 1111

end;

ClrScr;

for i : = 1 to rows do
begin

for j : = 1 to columns do
if cells[i,j] = TRUE then

write(celll { cell in space l
else

write(' '); no cell in space
end

{ ------------------------ --

procedure load;
{ load initial cell file into array of cells l
var

i,j integer;
temp: integer;

begin
hold random number l

randomize; initialize random number generator l

end;

for i : = 1 to rows do
for j : = 1 to columns do

begin
temp = random(2); select random number between 1 and 2 l
if temp= 1 then

cells[i ,j] TRUE
else

cells[i ,j]
end;

FALSE

{ --

function count (i, j: integer l : integer;
{ count number of cells in neighborhood
var

l ,m : integer;
sum: integer;
srow, erow integer;
scol, ecol : integer;

begin
sum:= O;

loop counters
running sum l
starting and ending row locations l
starting and ending column locations

initialize running sums

if i = 1 then find starting row }
srow 1

else
srow - l;

if i = rows then
erow: = rows

1111 t'lppendix rJ

{ find ending row}

else
erow + l;

if j = 1 then { find starting column l
scol 1

else
scol j-1 ·

if j = columns then { find ending column l
ecol columns

else
ecol j + 1;

for l : s row to erow do { count nearby cells
form = scol to ecol do

if (i<>l) OR (j<>m) then don't count self l
if oldcells[l ,m] = TRUE then

sum: = sum + l;
count : = sum; { return sum l

end;

{ --

procedure rule;
{ apply Game of Life rule

note that the first and last cells in a row are treated specially

var
i . j integer; { local counters l

begin

end;

for i : = 1 to rows do
for j : = 1 to columns do

oldcells[i ,j] : = cells[i ,jJ;

i nit;

for i : = 1 to rows do
for j : = 1 to columns do

case count(i ,j) of
0,1 cells[i,jJ
2: cells[i,jJ
3: cells[i,jJ
4,5,6,7,8 cells[i,j]
end

remember old cell configuration l

initialize next configuration

{ count nearby cells l
FALSE;
oldcells[i ,j];
TRUE;
FALSE { overcrowding l

{ ------------------------ begin program----------------------- l

var
i : integer;
iter : integer; { number of iterations for simulation}

Program listings 1111

begin
load;
write(' File Loaded');
display;
write('Enter number of iterations for simulation ');
readln(iter);
write(' Press Enter to Begin Simulation ');
readln;
for i : = 1 to iter do
begin

rule;
display

end

apply rule to cell field
display updated universe

end.

program Mandel;
(compute and display Mandelbrot set

12 - 21 - 93 Phil Laplante

uses
Complex, Graph; (include graphics and complex routines}

canst

var

zoom= 2.0;
escape= 4.0;

GraphDriver : integer;
GraphMode integer;
ErrorCode integer;
i ' j integer;
MaxY integer;
scale real ;
mag real ;
iter integer;
cx,cy real;
x. y real ;

create 2 by 2 window
escape value }

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }
square of magnitude of complex number }
escape iteration counter }
x and y components of c }
coordinate values in complex plane }

begin

(initialize graphics }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then (check for error}
begin

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');

Ill Appendix fJ

end;

Wri tel n('Program aborted ');
Halt(l)

MaxY GetMaxY;
scale:= 2.0•zoom/MaxY;

find maximum X screen coordinate
calculate zoom factor}

X

y
0;
0;

zet zO = 0 + Di l

for i Oto MaxY do (MaxY is usually smaller than MaxX l
begin

for j = 0 to MaxY do
begin

X :

y :
O;
O;

zet zO = 0 + Qi l

ex: scale•i - zoom; sweep value of c l
cy: zoom- scale•j;
mag : = O; initial loop guards
iter : = 0;
begin

while (iter < 30) and (mag< escape) do
begin

mult(x,y,x,y,x,y);
add(x ,y,cx,cy,x ,y):
mag:= x•x + y•y;
iter = iter + l;

end;
if mag< escape then

putpixel(i ,j, BLUE)
end (while loop}

end (j loop}
end(i loop}

end.

program Mandel2;

(square z l
(add c }
(calculate square of magnitude l
(increment counter l

output blue for non-escapees}

(compute and display unfilled Mandelbrot set
12 - 21 - 93 Phi 1 Laplante

uses
Complex, Graph;

const
zoom 2.0:
escape= 4.0;

var
GraphDriver
GraphMode
ErrorCode
i' j

: integer;
integer ;
integer;
integer;

(include graphics and complex routines}

create 2 by 2 window
escape value l

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}

Program listings 1111

MaxY
MaxColor
scale

integer :
integer ;
real :

Maximum Y screen coordinate}
Maximum num ber of colors)
scale factor I

mag
iter

real :
integer:

square of magnitude of complex number I
escape iteration counter l

continue boolean: keep iterating? J
cx,cy real : x and y components of c I
x. y real : coordinate values in complex plane I

begin

{ initialize graphics l

GraphDriver : = Detect: {try to detect grap hics card)
InitGraph(GraphDriver,GraphMode, ' '); {initia l ize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error)
begin

Writeln(' Graphics error : ' , GraphErrorMsg(ErrorCode)):
Write l n('Graphics card not found'):
Writeln(' Program aborted '):
Halt(ll

end;
MaxColor GetMaxColor:
MaxY : GetMaxY:
scale: 2.0•zoom/MaxY;

get maximum number of colors l
find max i mum X screen coordinate
ca l culate zoom factor}

X

y
0;
0 ;

zet zO = 0 + Oi l

for i Oto MaxY do MaxY is usually smaller than MaxX l
begin

for j : = 0 to MaxY do
begin

X

y
0:
0;

{ zet zO = 0 + Qi J

ex: scale•i - zoom ;
cy: zoom - scale•j;
mag = O;
iter : = 0 :
continue : = true;
begin

while (iter < MaxColor•2)
begin

mult(x,y,x ,y,x,y);
add(x,y,cx,cy , x ,y) ;
mag : = x•x + Y*Y:
iter = iter + l;

end;
if mag> escape t hen

beg i n

sweep value of c l

i nitia l loop guards

and (mag< escape)

square z l
add c)

do

calculate square of magnitude l
increment counter l

color escaping points)

putpixel(i,j, iter di v 2);

Im t'lppendix fJ

continue :
end

FALSE

end while loop)
end { j loop l

end{ i loop)
end.

program mazel;
{ compute and display a "maze"

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;
var

GraphDriver
GraphMode
ErrorCode
X, y

i
k
MaxY

Phil Laplante

include graphics package}

: integer; Stores graphics driver number}
integer; Stores graphics mode for driver}
integer; Reports any error condition}
real; pixel coordinates l
longint; loop counters}
integer; row selector }
integer; maximum Y screen coordinate}

d array[l .. 6,1 .. 6] of real; { holds data of IFS attractor l

begin
GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error)
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Wri tel n('Program aborted');
Halt(1)

end;
MaxY : = GetMaxY; { get screen limits l

initialize IFS data array l

d[l,l]: 0.33; d[l,2]: 0; d[l,3]: 0; d[l ,4]: 0.33; d[l, 5]:
d[2,l]: 0.33; d[2,2J: 0; d[2,3J: 0; d[2,4J: 0.33; d[2,5J:
d[3,1J: 0.33; d[3,2J: 0; d[3,3J: 0; d[3,4]: 0.33; d[3,5J:
d[4,l]: 0.33; d[4,2J: 0; d[4,3J: 0; d[4,4J: 0 . 33; d[4,5J:
d[5,1J: 0.33; d[5,2J: 0; d[5,3J: 0; d[5,4J: 0.33; d[5,5J:
d[6,1]: =0.33; d[6,2J: = 0; d[6,3J: = 0; d[6,4J: = 0.33; d[6,5J:

MaxY : = GetMaxY;

randomize; {initialize random number generator}

1; d[l,6]: = 1;
MaxY div 2. d[2,6]: 1;
1; d[3,6J: = MaxY div 2;
MaxY div 2; d[4,6J: = MaxY;
MaxY; d[5,6J: = MaxY;

= 1; d[6,6J: = MaxY;

P rogram listings Ill

X 0;
y 0;

for i :
begin

k
X :
y :
if

end
end.

{set starting coordinates)

1 to 320000 do

random(B) + l;
d[k,l]•x + d[k,2]•y + d[k,5];
d[k,3J•x + d[k,4J•y + d[k,6];

pick random row)
transform coordinates

i > 10 then skip first 10 iterations
putpixel(round(2•x/3),round(2•y/3),DARKGRAY)

program prey;
{ Simulate Wolf - Caribou populations

1/29/93 Phil Laplante)

uses
Crt;

var
caribou_0
wolf 0 -

caribou
wolf

caribou _p
wolf _p

caribou b -
wolf d -
K

iter

real ;
real ;

real ;
real ;

real ;
real ;

real ;
real ;
real ;

integer;

integer;

I unit for CRT driver)

initial caribou population
initial wolf population)

current caribou population
current wolf population)

previous caribou population
previous wolf population)

caribou birth rate)
wolf death rate)
contact-death ratio)

number of iterations to track)

begin
ClrScr; I clear screen I
write(' Enter initial caribou population ');
readln(caribou_0);
write(' Enter initial wolf population ');
readln(wolf_0);
write(' Enter caribou birth rate ');
readln(caribou_b);
write(' Enter wolf death rate ');
readln(wolf_d);

write(' Enter contact-death rate ');

1111 Appendix rJ

end.

readln(K);

write(' Enter number of iterations (months) for simulation ');
readln(iter);

caribou_p
wolf_p

caribou_O;
wolf_O;

writeln('press enter to begin simulation ');
readln;

writeln(' wolves
for i : = 1 to i ter do

begin
if i mod 22 = 0 then
begin

caribou');

write l n ('press enter to continue '):
readln:

end;

ClrScr;
writeln(' wolves caribou')

calculate and output current populations. truncate to nearest integer)
caribou : = caribou_p + caribou_b • caribou_p- K • caribou_p • wolf_p;
wolf : = wolf_p + k • caribou_p • wolf_p - wolf_d • wolf_p;
writeln('month ',i:4,
wolf:6:0.' ',caribou:6:0);

caribou_p
wolf_p

end

caribou;
wolf

{ reset previous generation counters)

program price;
compute and display bifurcation diagram for
mini-economic system given by

12 - 21 - 93

uses
Graph;

var
GraphOriver
GraphMode
ErrorCode
i . j

Phil Laplante

{ include graphics routines)

: integer;
integer;
integer;
integer;

Stores graphics driver number)
Stores graphics mode for driver)
Reports any error condition)
loop variables)

Program listings Ill

MaxX integer; Maximum X screen coordinate}
MaxY integer; Maximum Y screen coordinate}
t real ; iterated value)

a real ; constant of iteration
MaxColor integer; maximum number of colors on graphics
scale real ; plotting scale factor)

begin
GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode,""); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error)
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCodell;
Writeln('Graphics card not found ');
Wri tel n ('Program aborted');
Halt(ll

end;
MaxColor GetMaxColor;
MaxX GetMaxX;
MaxY : = GetMaxY;

scale : = MaxX/4;

a : =
for i

begin
t :

2.50;
= 1 to MaxX do

0. 9;

find maximum number of colors l
find maximum X screen coordinate
find maximum Y screen coordinate

calculate overall scale factor l

set starting point l

calculate orbit about t=l
iterate a l

card

a : =
for j

begin

a+ 1.50/(MaxXl;
: = 1 to 100 do calculate orbit after 200 iterations}

t : = a•t- a•t•t;
if j > 50 then
begin

calculate new price l
skip first 50 iterations

putpixel(i, round(MaxY/2 + t•scale), GREEN);
end

end.

end
end

program rabbit;
{ compute and display Douady's Rabbit from the Julia set of

f(zl = zA2 + -0.122 + 0.745i

12 - 21 - 92 Phil Laplante

uses
Complex, Graph; { include graphics and complex routines}

1111 -A.ppendixrJ

)

const

var

zoom= 2.0;
attract= 0.0001 ;

GraphDriver : integer;
GraphMode integer;
ErrorCode integer;
i. j integer;
MaxY integer;
scale real ;
mag real ;
iter integer;
continue boolean;
x. y real;
MaxColor integer;

creates 4 by 4 window
attractor sensitivity

Stores graphics driver number}
Stores graphics mode for driver)
Reports any error condition)
loop variables}
Maximum Y screen coordinate}
scale factor l
square of magnitude of complex number)
escape iteration counter)
continue iteration counter)
real and imaginary parts of z
maximum number of colors on graphics card)

begin

(initialize graphics }

GraphDriver : = Detect; (try to detect graphics card)
InitGraph(GraphDriver . GraphMode,' '); (initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then (check for error}
begin

Writeln(' Graphics error: '. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln(' Program aborted');
Halt(1)

end;
MaxColor
MaxY :
scale:

GetMaxColor;
GetMaxY;
2. 0•zoom/MaxY;

find maximum number of colors)
find maximum Y screen coordinate
calculate zoom factor)

for i :
begin

0 to MaxY do MaxY is usually smaller than MaxX)

for j
begin

= 0 to MaxY do

x : = seal e•i - zoom;
y: = zoom - scale•j;
continue : = TRUE;
iter : =0 ;
while continue= TRUE do
begin

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

mult(x,y,x,y,x,y); (square z)
add(x,y, - 0 . 122,0 . 745,x,y); { add constant
mag : = x•x + y•y; { calculate square of magnitude
if mag< attract then

continue : = FALSE point is an attractor l
else

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function)

Program listings 1111

iter : iter + 1
else

begin
putpixel (i ,j, iter
continue : = FALSE

end

{ point escapes, plot it }

div 2):
{ get out of loop I

end while loop}
end {j loop}

end{ i loop}
end.

program forest_scene;
{ compute and display forest of trees

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y

i • j
q
k
MaxX
MaxY
d
scale
xpos ,ypos
crand
color

Frank D'Erasmo

{include graphics package)

: integer; Stores graphics driver number)
integer; Stores graphics mode for driver)
integer; Reports any error condition)
real: pixel coordinates)
longint: loop counters)
integer; random number)
integer: row selector)
integer; Maximum X screen coordinate)
integer: Maximum Y screen coordinate)
array[l .. 8,1 . . 6] of real; { holds data of IFS attractor)
real; { random scale factor}
integer; { tree position)
integer; { pick random color (green, blue, yellow))
integer; { random color value)

procedure trees;
begin
{ initialize IFS data array

d[l.l]:
d[2,1J:
d[3,l]:
d[4,1J:

randomize;

X

y
0;
O;

for j :

0; d[l,2]: = 0; d[l,3] : = 0; d[l,4]: = 0 . 5; d[l,5]: = 0; d[l,6]: = 0;
0.42: d[2,2]: = - 0.42; d[2,3J: = 0.42; d[2,4J: = 0.42; d[2,5J: = 0: d[2,6J: = 0.2;

0.42; d[3,2J: 0.42; d[3,3J: - 0.42; d[3,4J: = 0.42; d[3,5]: = 0: d[3,6J: =0.2;
0 . 1; d[4,2J: = 0: d[4,3J: = 0: d[4,4J: = 0.1; d[4,5]: = 0; d[4,6]: = 0.2;

{initialize random number generator)

{set starting coordinates)

1 to 200 do { make 200 trees)

B -Appendix fl

begin
xpos : = random(MaxX):
ypos : = random(MaxX l:
scale : = random(3) + 1:
crand : = random(lO) + 1:
case crand of

0,1.2,3,4,5,6,7,8:
color GREEN;

9 : color YELLOW;
10 : color RED:

end: {case}

for i : = 1 to 800 do
begin

q : = random(lOO) + 1:
if q < = 40 then

k : = 2:
if (q > 40) AND (q < 81) then

k : = 3;
if (q > = 81) AND (q < 95) then

k : = 4;
if (q > = 95 l then

k: = l;

pick tree position

pick tree scale
pick tree color

most trees a re green }

some trees a re yellow I
some trees die }

800 pixels per tree I

pick random number from 1 - 100}
assign column according to l
probability l

x : = d[k,l]•x + d[k,2]•y + d[k,5]; { transform coordinates l
y : = d[k,3J•x + d[k,4J•y + d[k,6]:
if (ypos- y•MaxY/scale > MaxY - 50) then {clears area on screen}

putpixel(xpos + round(x•MaxX/scalel,round(ypos - y•MaxX/scale),color)
end:

end;
end:

procedure redwds; {generates redwood trees}

begin
{ initialize IFS data array }

d[l. 1]: 0.33; d[l.2]: O; d[l.3]: 0; d[l.4]: 0.33: d[l. 5]: = 1 ; d[l.6]: = 0:
d[2,l]: 0. 33: d[2,2J: O; d[2,3J: 0; d[2,4J: 0.33: d[2,5J: = MaxX: d[2,6J: = 0;
d[3 . 1J: 0. 33: d[3,2]: 0; d[3,3J: 0; d[3,4]: 0 . 33; d[3,5J: =l; d[3,6J: = MaxX;
d[4,1J: 0. 33: d[4.2J: 0: d[4,3J: 0; d[4,4]: 0.33; d[4,5J: = MaxX: d[4,6J: = MaxX:
d[5,l]: 0.33; d[5,2]: O; d[5,3J: =2 : d[5,4]: 0.33; d[5,5J: MaxX div 2; d[5,6J: = 1;
d[6,l]: 0.33; d[6,2J: = O; d[6,3J: =2: d[6,4J: 0.33; d[6,5]: = MaxX: d[6,6]: = MaxX div
d[7,1J: = 0.33; d[7,2]: 0; d[7,3J: =2; d[7,4]: 0.33; d[7,5J: 1; d[7,6J: = MaxX div 2;

2;

d[8,1J: 0.33; d[8,2]: = O; d[8,3]: =2; d[8,4]: 0.33: d[8,5J: = MaxX div 2; d[8,6J: = MaxX:

randomize:

X

y

for

0;
0;

{initialize random number generator}

{set starting coordinates!

1 to 300000 do {300,000 pixels!

Program listings lfil

begin
k random(8) + 1;
x : d[k,l]•x + d[k,2]•y + d[k , 5];

pick random column }
transform coord i nates

y: d[k , 3J•x + d[k,4J•y + d[k , 6];
put pixel (round (2•x / 3) , round (2•y / 3) , RED) ;
putpixel (round(2•(x + 1)/3),round(2•(y + 1)/2),RED)

end ;
end;

procedure clouds;
begin

{generates mist/c l ouds}

in i tialize IFS data array }

d[l. 1]: 0.33; d[l,2] : 1; d[l,3]: 0 ; d[l ,4] : 0.33 ;
d[2,1J : 0 . 33 ; d[2,2J: 1 ; d[2 , 3]: O; d[2 ,4J : 0 . 33 ;
d[3,1J: 0.33; d[3 , 2]: 1. d[3,3]: 0 ; d[3,4] : 0 . 33;
d[4,1J: 0.33; d[4,2J: 1; d[4,3J: O; d[4 ,4J : 0 . 33 ;
d[5,1J: 0.33; d[5,2] : 0; d[5,3J: 0; d[5,4J : 0 . 33;
d[6 , l] : 0.33; d[6,2J: 0; d[6,3J: O; d[6 ,4J: 0.33 ;
d[7 , 1J: 0.33 ; d[7 , 2J: O; d[7 , 3J: 0; d[7 ,4J : 0 . 33 ;
d[8,1J : 0.33 ; d[8,2J : O; d[8,3J: 0 ; d[8 , 4J : 0 . 33;

randomize; {initialize random number generator}

X 1 ; (set starting coord i nates}
y 50 ;

d[l, 5]:
d[2 , 5J :
d[3,5J :
d[4, 5J :
d[5,5J:
d[6 , 5J:
d[7 , 5J:
d[8,5J:

for i 1 to 30000 do 30 , 000 pixels }
begin

k random(8) + l;
x: d[k,l]•x + d[k , 2]•y + d[k , 5];
y : d[k,3]•x + d[k,4]•y + d[k , 6] ;
if y < 200 then

pick random column
transform coordinates

putpixel(round(2•x/3) , round(2•y/3),LIGHTGRAY)
end;

end;

begin {main}
GraphOriver : = Detect ; {try to detect graphics card}
InitGraph(GraphDriver ,GraphMode, ' '); {initialize graphics}
ErrorCode : = GraphResult;
i f ErrorCode <> grOk then {c heck for error}
begin

end;

Writeln(' Graphics error : ', GraphErrorMsg(ErrorCode));
Writeln(' Graphics card not found ') ;
Writeln('Program aborted ');
Halt(l)

MaxY: = GetMaxY;
MaxX : = GetMaxX ;
trees ;

- Appendix IJ

= O; d[l.6] : = O;
= MaxY ; d[2,6] : = 0 ;
= 1 ; d[3 , 6J: = MaxY ;
= MaxY ; d[4,6J : = MaxY ;
= MaxY div 2; d[5,6J : =l ;
= MaxY; d[6 , 6J: = MaxY di v 2;

1 . d[7 , 6J : = MaxY div 2 ;
= MaxY di v 2 ; d[8 , 6J: = MaxY;

redwds;
clouds

end.

program rocks;
{ compute and display "clouds" fractal

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y

Frank D'Erasmo }

{include graphics package}

: integer; Stores graphics driver number}
integer: Stores graphics mode for driver}
integer: Reports any error condition}
real; pixel coordinates }
longint; loop counters}
integer; row selector }
integer; Maximum X screen coordinate}

k
MaxY
d array[l. .4,1. . 6] of real; { holds data of IFS attractor }

begin
GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error}
begin

end:

Writeln ('Graphics error: '. GraphErrorMsg(ErrorCode));
Writeln ('Graphics card not found');
Writel n('Program aborted');
Halt(l)

MaxY : = GetMaxY;

initialize IFS data array }

d[l.l]:
d[2,l]:
d[3,1J:
d[4,l]:

0. 5;
0. 5;
- 0.4;
- 0. 5;

d[l,2]: = 0; d[l,3]: = 0:
d[2,2J: = 0; d[2,3J: = 0:

d[3,2J: 0; d[3,3J: l;
d[4,2]: = 0; d[4,3J: = 0;

d[l,4]: = 0.5; d[l,5]: = O; d[l,6]: = 0;
d[2,4]: = 0.5; d[2,5J: = 2; d[2,6J: = 0;

d[3,4J: 0.4; d[3,5J: O; d[3,6]: l;
d[4,4J: = 0.5; d[4,5]: = 2; d[4,6J: = l;

randomize;

X

y
0;
0:

for i
begin

{initialize random number generator}

{set starting coordinates}

1 to 320000 do

Program listings -

k
X

y

random(4) + 1:
d[k,l]•x + d[k,2J•y + d[k,5] :
d[k,3]•x + d[k,4]•y + d[k ,6];

pick random number from 1 - 41
transform coordinates I

if i > 10 then skip first 10 iterations
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),BROWN)

end { scale for screen }
end.

program seals:
{ compute and display seals or dolphins

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y

Frank D'Erasmo

{include graphics package}

: integer: Stores graphics driver number}
integer; Stores graphics mode for driver}
integer: Reports any error condition}
real: pixel coordinates }
integer: loop counters}
integer: row selector }
integer: Maximum Y screen coordinate}

k
MaxY
d array[l. .4,1. . 6] of real: { holds data of IFS attractor }

begin
GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode, ''): {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)):
Writeln('Graphics card not found'):
Writeln('Program aborted'):
Halt(l)

end;

MaxY : = GetMaxY:

initialize IFS data array I

d[l,1]: - 0.5: d[l,2]: O;
d[2,1]: - 0. 5; d[2,2J: O;
d[3,1J: - 0.4; d[3,2]: 0 :
d[4,1]: - 0. 5: d[4,2J: 0:

randomize; {initialize

d[l,3]:
d[2,3J:
d[3 , 3J:
d[4,3]:

random

0: d[l ,4]: 0. 5;
0; d[2,4J: 0. 5;
1: d[3,4] : 0.4;
0: d[4,4J: 0. 5:

number generator}

X : = 0: {set starting coordinates}

- Appendix lj

d[l, 5]:
d[2 , 5]:
d[3,5]:
d[4 , 5J:

0;
2;
O;
2:

d[l,6]:
d[2,6]:
d[3 ,6J:
d[4,6J:

O;
O;
1;
1:

y : 0;

for i 1 to 32000 do
begin

k
X :
y :

if

random(4) + l;
d[k,l]•x + d[k,2J•y + d[k,5];
d[k,3]•x + d[k,4]•y + d[k,6];

pick random number from 1 - 4)
transform coordinates l

> 10 then skip first 10 iterations
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),WHITEJ

end; { scale for screen l
end.

program seaweed;
{ compute and display seaweed

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

var

Graph;

GraphDri ver
GraphMode
ErrorCode
X, y

Frank D'Erasmo

{include graphics package)

: integer; Stores graphics driver number)
integer; Stores graphics mode for driver)
integer; Reports any error condition)
real; pixel coordinates l
longint: loop counters)
integer; row selector l
integer; Maximum Y screen coordinate)

k
MaxY
d array[l. .4,1. .6] of real; { holds data of IFS attractor l

begin
GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode grOk then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted');
Halt(l l

end;

MaxY : = GetMaxY;

initialize IFS data array)

d[l,lJ:
d[2,l]:
d[3,l]:
d[4,l]:

0. 5;
0. 5;
0.4;
0. 5;

d[l,2]:
d[2,2]:
d[3,2J:
d[4,2J:

0; d[l,3]:
O; d[2,3]:
0; d[3,3]:
0; d[4,3J:

0;
0;
1.

= O;

d[l,4]:
d[2,4J:
d[3,4]:
d[4,4J:

0. 5;
0.5;
0 .4;
0. 5;

d[l, 5]:
d[2,5J:
d[3,5J:
d[4,5J:

O; d[l,6]:
2; d[2,6J:
0; d[3,6J:
2; d[4,6J:

0;
0;
1;
1;

Program listings mJ

randomize; {initialize random number generator}

X

y

O;
0;

{set starting coordinates}

for i 1 to 320000 do {320,000 pixels}
begin

k random(4) + l; {pick random number from 1-4)
x : d[k,l]•x + d[k,2J•y + d[k,5]; { transform coordinates }
y : d[k,3]•x + d[k,4]•y + d[k,6];
if i > 10 then { skip first 10 iterations

putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),GREEN)
end; { scale for screen }

end.

p rag ram siege l ;
{ compute and display a Siegel disk - the Julia set of
f(z) zA2 - 0 . 39054 - 0.58679i

1 - 2 - 92 Phil Laplante
uses

Complex. Graph;

canst

var

zoom= 2.0;
attract= 0.0001;

GraphDriver : integer;
GraphMode integer ;
ErrorCode integer;
i. j integer;
MaxY integer;
scale real ;
mag real ;
iter integer;
continue boolean;
X, y real ;
MaxColor integer;

begin

{ initialize graphics }

{ include graphics and complex routines}

create 4 by 4 window}
attractor sensitivity J

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }
square of magnitude of complex number l
escape iteration counter }
continue iteration counter }
real and imaginary parts of z
maximum number of colors on graphics card }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

1111 ,Appendix lj

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted' l:
Halt(ll

end:
MaxColor GetMaxColor:
MaxY : GetMaxY:
scale: = 2.0•zoom/MaxY:

find maximum number of colors }
find maximum Y screen coordinate
calculate zoom factor}

for i : 0 to MaxY do MaxY is usually smaller than MaxY }
begin

for j = 0 to MaxY do
begin

x : = seal e•i - zoom;
y : = zoom - scale•j:
continue : = TRUE:
iter : = 0:
while continue= TRUE do
begin

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

mult(x,y,x,y,x,y); (square z }
add(x,y, - 0.390540, - 0.58679,x,y); (add constant}
mag : = x•x + Y*Y: (cal cul ate square of magnitude
if mag< attract then

continue : = FALSE point is an attractor }
else

if (mag< 100) AND (iter < MaxColor•2) then (keep iterating function }
iter = iter + 1

else point escapes, plot it J

begin
putpixel(i,j, iter div 2):
continue : = FALSE (get out of loop }

end
end while loop}

end (j loop}
end(i loop}

end.

program sierp:
(compute and display Sierpinski triangle via random orbits

12 - 5 - 93 Phil Laplante
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y
triangle
i , j , k

: integer:
integer:
integer:
integer;
integer;
integer;

(include graphics package}

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
pixel coordinates }
select random triangle}
loop counters}

Program listings IEII

MaxY integer; maximum X and Y coordinates}

begin
GraphDr i ver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode, · '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error }
begin

Writeln('Graphics error: ' . GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found ');
Writeln(' Program aborted');
Halt(l)

end;

MaxY : = GetMaxY;

randomize; {initialize random number generator}

x random(MaxY) ; {select random starting point}
y random(MaxY); {use MaxX=MaxY l

for i : = 1 to 20000 do
if i > 1000 then
begin

skip first few points }

triangle:= random(3) + l; { select random number between 1 and 3}
case triangle of { select which triangle to measure from}
1 : begin

X x div 2·
y (MaxY + y) div 2

end.

end;
2: begin

X (MaxY div
y y div 2

end;
3: begin

X (MaxY + x)
y (MaxY + y)

end
end;

putpixel(x,y,WHITE)
end { i loop}

program sierp2;

2 + x)

div 2;
div 2

{ compute and display Sierpinski triangle
using Michael Barnsley's IFS algorithm

12 - 5 - 93 Phi l Laplante
uses

{ find 1/2 way point to A}

div 2; { find 1/2 way point to B

{ find 1/2 way point to C}

{ output pixel }

Graph; {include graphics package}

1111 AppendixrJ

}

var
GraphOriver
GraphMode
ErrorCode
X, y
i
MaxY
k

: integer; Stores graphics driver number}
integer; Stores graphics mode for driver}
integer; Reports any error condition}
real; pixel coordinates l
integer; loop counter l
integer; maximum X and Y coordinates}
integer; select random row l

d array[l .. 3,1. .6] of real; { holds data of IFS attractor l

begin
GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode,' '); (initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writel n('Program aborted');
Halt(l l

end;

initialize IFS data array

d[l.lJ: 0. 5; d[l.2]: 0; d[l,3]: 0; d[l ,4]: 0. 5; d[l.5]:
d[2,l]: 0. 5; d[2,2J: 0; d[2,3J: 0; d[2,4J: D. 5; d[2,5J:
d[3,1J: 0. 5; d[3,2J: 0; d[3,3]: 0; d[3,4J: 0. 5; d[3,5J:

MaxY : = GetMaxY;

randomize; (initialize random number generator}

x 0.0; {set starting coordinates}
y 0.0;

for i : = 1 to 30000 do
begin

k random(3) + l;
x: d[k,l]•x + d[k,2]•y + d[k,5];
y: d[k,3]•x + d[k,4J•y + d[k,6];

pick random row l
transform coordinates

25;
1;

50;

if i > 10 then skip first 10 iterations

d[l,6]:
d[2,6J:
d[3,6J:

putpixel(round(x•MaxY/100),round(y•MaxY/100),WHITE) { convert to screen}
end

end.

program snow;
(compute and display "snow" from the Julia set of

f(z) = zA2 0.11031 - 0.67037i

1;
50;
50;

Program listi,:,gs EEi

1 - 2 - 92 Phil Laplante
uses

Complex, Graph; { include graphics and complex routines}

canst

var

zoom = 1. 5;
attract= 0.0001;

GraphDriver : integer;
GraphMode integer ;
ErrorCode integer;
i . j integer;
MaxY integer;
scale real ;
mag real ;
iter integer;
continue boolean;
X, y real ;
MaxColor integer;

create 3 by 3 window l
attractor sensitivity l

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
loop variables}
Maximum Y screen coordinate}
scale factor }
square of magnitude of complex number l
escape iteration counter l
continue iteration counter l
real and imaginary parts of z
maximum number of colors on graphics card l

begin

{ initialize graphics }

GraphDriver : = Detect; {try to detect graphics card}
InitGraph(GraphDriver,GraphMode, ' '); {initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error}
begin

Writeln('Graphics error : '. GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found ');
Wri tel n('Program aborted ');
Halt(l)

end;
MaxColor
MaxY :
scale:

for i :
begin

for j
begin

GetMaxColor; find maximum number of colors l
GetMaxY; find maximum Y screen coordinate
2.0•zoom/MaxY; calculate zoom factor}

0 to MaxY do ·{ MaxY is usually smaller than MaxY l

= 0 to MaxY do

x : = scale•i - zoom;
y : = zoom - scale•j;
continue : = TRUE;
iter : = 0;
while continue= TRUE do
begin

set starting value of real(z)
set starting value of imag(z)
assume point does not escape

mult(x,y,x,y,x,y); { square z }
add(x,y,0.11031, - 0.67037,x,y); { add constant l
mag : = x•x + y•y; { calculate square of magnitude l
if mag< attract then

- ,"lppendix IJ

continue : = FALSE point is an attractor l
else

if (mag< 100) AND (iter < MaxColor•2) then (keep iterat i ng funct i on)
iter = iter + 1

else point escapes, plot it l
begin

if(iter div 2 = WHITE) then (output white only
putpixel(i,j, WHITE):

continue : = FALSE get out of loop l
end

end while loop)
end (j loop)

end (i loop)
end.

program swamp:
(compute and display a swamp

using Michael Barnsley's IFS algorithm

12 - 5 - 93
uses

Graph;

var
GraphDriver
GraphMode
ErrorCode
X, y

i • j
q
k
MaxX

Phil Laplante

(include graphics package)

: integer; Stores graphics driver number}
integer; Stores graphics mode for driver)
integer: Reports any error condition)
real; pixel coordinates l
integer; loop counters)
integer; random number l
integer; row selector l
integer; Maximum X screen coordinate)

d array[l. .4,1. .6] of real: { holds data of IFS attractor l
real; (random seal e factor)
integer; (plant position l

scale
xpos,ypo s
crand integer: (pick random color (green, yellow, lightgreen)l
color integer; (random color value l

begin
GraphDriver : = Detect; (try to detect graphics card)
InitGraph(GraphDriver,GraphMode,''): (initialize graphics}
ErrorCode : = GraphResult;
if ErrorCode <> gr0k then {check for error)
begin

Writeln('Graphics error: ' , GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted'):
Halt(l)

end:

MaxX GetMaxX:

Program listings llil

initialize IFS data array

d[l,l]:
d[2,l]:
d[3,1J:
d[4,1J:

0.5; d[l,2]: = O; d[l,3]: = O; d[l,4]: = 0.25; d[l,5]:
0.25; d[2,2]: = O; d[2,3]: = O; d[2,4]: = 0.7; d[2,5]:
0.25; d[3,2]: = O; d[3,3]: = O; d[3,4]: = 0.7; d[3,5]:
0.5; d[4,2]: = O; d[4,3]: = O; d[4,4]: = 0.25; d[4,5]:

randomize; {initialize random number generator}

X

y
0;
O;

for j :
begin
xpos :
ypos :
scale
crand
case

{set starting coordinates}

= 1 to 70 do make

= random(MaxX); pick
= random(MaxX);

: = random(3) + l; pick
: = random(lO) + l; pick
crand of

0,1,2,3,4,5,6,7,8:
color GREEN; most

70 plants }

plant position

plant scale
plant color

plants a re green

l; d[l,6]: = l;
50; d[2,6]: = l;
l; d[3,6J: = 50;
50; d[4,6]: = 50;

}

9 color YELLOW; some plants a re yellow }

10 color LIGHTGREEN;
end;

for i : = 1 to 3000 do
begin

k random(4) + l;

some plants a re l i ghtgreen l

pick random row}

X

y
d[k,l]•x + d[k,2]•y + d[k,5];
d[k,3]•x + d[k,4]•y + d[k,6];

transform coordinates

if > 10 then { skip first 10 iterations
putpixel(xpos + round(x•scale),round(ypos- y•scale),color)

end
end

end.

program tree;
{ compute and display a tree

using Michael Barnsley's IFS algorithm

12 - 5 - 93 Phil Laplante
uses

Graph; {include graphics package}

var
GraphDriver
GraphMode
ErrorCode
X, y

: integer;
integer;
integer;
real ;

Im Appendix IJ

Stores graphics driver number}
Stores graphics mode for driver}
Reports any error condition}
pixel coordinates l

integer; loop counters)
q integer; random number l
k integer; row selector)
MaxY integer; Maximum Y screen coordinate)
d array[l. .4,1. .6] of real; { holds data of IFS attractor l

begin
GraphDriver : = Detect; {try to detect graphics card)
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics)
ErrorCode : = GraphResult;
if ErrorCode <> grOk then {check for error)
begin

end;

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Graphics card not found');
Writeln('Program aborted');
Halt(l)

MaxY : = GetMaxY;

initialize IFS data array

d[l, 1]:

d[2,l]:
d[3,1J:
d[4,1J:

0;
0.42;
0.42;
0 .1;

d[l,2]:
d[2.2J:
d[3,2]:
d[4,2]:

0; d[l,3]: = 0; d[l,4]: = 0.5; d[l,5]: = 0; d[l,6]: = 0;
- 0.42; d[2,3]: = 0.42; d[2,4]: = 0.42; d[2,5]: = O; d[2,6]: = 0.2;
0.42; d[3,3J: - 0.42; d[3,4J: = 0.42; d[3,5J: = O; d[3,6]: = 0.2;
O; d[4,3]: = 0; d[4,4]: = 0.1; d[4,5]: = O; d[4,6J: = 0.2;

randomize; {initialize random number generator)

{set starting coordinates) X

y
0;
0;

for i 1 to 30000 do

end.

begin
q : = random(l00) + l;
if q <= 40 then

k : = 2;
if (q > 40) AND (q < 81) then

k : = 3;
if (q > = 81) AND (q < 95) then

k : = 4;
if (q > = 95) then

k : = 1;

x : = d[k,l]*X + d[k,Z]*y + d[k,5];
y : = d[k,3J•x + d[k,4]•y + d[k,6];

pick random number from 1 - 100}
assign row according to l
probability }

transform coordinates)

if i > 10 then skip first 10 iterations
putpixel(round(MaxY/2 + 3•MaxY•x),round(MaxY- 3•MaxY•y),GREEN)

end { scale for screen l

Program listings B

\

\

\

\

(jlossary
affine transformations Mathematical operations involving sliding,
stretching, and rotating.

algorithm A recipe or set of rules that describes some process.

aspect ration In computer screens, the ratio of the length of the
x-coordinate range to the y-coordinate range.

attractor The point to which an iterated function tends toward if it
doesn 't escape and is not indifferent.

attractor sensitivity The threshold to which a function f (z) is iterated at
the point z0. If the square of its modulus at any point is less than the attractor
sensitivity, then the point attracts.

basin of attraction The set of all points that, when iterated by a function
f, attract to the same point.

bifurcation diagram A diagram of an iterated function against the value
of a swept constant. In many cases, this generates a fractal that tends to
have two zones of activity.

binary variables and constants Variables and constants that can only
take on the values O or 1.

Boolean AND operation A logical operation on binary variables and
constants that produces a one only if both operands are one. It's usually
denoted as •.

Boolean complement A logical operation on a binary variable or
constant that produces a one if the operand is a zero, and vice versa. It's
usually denoted by a bar over the operand.

Boolean OR operation A logical operation on binary variables and
constants that produces a one if one or both operands are one. It's usually
denoted as+.

Cantor middle third argument A recursive mathematical procedure
involving the removal of the middle third of a line segment.

Cantor set The result of applying the Cantor middle third.

cellular automata A type of dynamical system involving matrices or
cells.

chaos A state of disorder.

chaotic system Those that, when they are in equilibrium, are in unstable
equilibrium.

{ilossary 111!1

Ill (jlossary

complex conjugate If z = a+ bi is a complex number, then its complex
conjugate, denoted z, is z = a - bi.

complex number A number that has both real and imaginary parts. For
example, in the complex number 3 + 4i, 3 is the real part and 4 is the
imaginary part.

complex plane A map where complex numbers are plotted. It's similar
to the Cartesian plane, except that the y-axis is labelled as "iy."

complex variables Placeholders for complex variables. Usually denoted
by some variant of the letter z.

continuous simulation A model involving differential equations.

compression ratio The ratio of the bytes required to store an
uncompressed image to those needed to store the compressed equivalent.

discrete simulation A computer model using finite difference equations.

differential equations An equation involving a function and its
derivatives.

dynamical systems A subfield of mathematics that's concerned with
the repeated application of an algorithm.

escape When the result of iterating a function at a point tends toward
infinity or minus infinity.

Fibonacci sequence A sequence of numbers that begins with 0, 1, then
proceeds by adding the preceding two numbers in a sequence to get the next.

filled Mandelbrot set A Mandelbrot set in which colors aren't used.

finite difference equation A recursive equation that describes a
function at time tin terms of the function at previous time samples, t - 1,
t- 2, and so on.

fractal An image with an infinite amount of self-similarity.

fractal dimension Fractional dimension of geometric images. Defined as
the logarithm of the number of self-similar pieces divided by the logarithm of
the magnification needed to obtain them.

function In mathematics, a mapping or rule.

function composition The process of applying a function to the result of
another function or itself.

function iteration Repeated composition of a function.

hyperbolic cosine A cosine function defined on real numbers. In
particular, if xis a real number, then:

ex+ e-x
cosh(x)= --

2

hyperbolic sine A sine function defined on real numbers. In particular, if
x is a real number, then:

ex - e-x
sinh(x) = --

2

image compression The process of reducing the amount of stored
information needed to reproduce an image.

imaginary part In a complex number, the component that consists of a
real number (a number found on the number line) times the positive square
root of -1, denoted i.

indifferent A point that, under iteration, acts as neither an attractor nor a
repelling point.

inverse For a real function t, if its inverse is 1-1, then 1-1(f(x)) = x.

iteration Repeated composition of a function or procedure.

iterated function systems A way to generate fractals by the repeated
application of special geometric procedures. Abbreviated as IFS.

Julia set A complex function, f (z), is the boundary of the set of points
that escape.

logistics equation An equation first proposed as a model for population
growth. It's given by:

P(t + 1) = aP(t) - aP(t) 2

In this equation, aP(t) is the previous year's population plus newborns, and
aP(t)2 is the death rate. Plotting the values of P(t) over many years and over
many values of a yields a bifurcation diagram.

matrix A mathematical construct that consists of rows and columns that
hold numbers.

Mandelbrot set The set of complex constants c; for which the orbits of
the function f (z) = g(z) + C; evaluated at the initial condition of z0 = 0, don't
escape. The Mandelbrot set is usually found for the function g(z) = z2.

modulus The modulus of a complex number, z, is equal to the square root
of the sum of the squares of its real and imaginary parts.

noncommutative algebra An algebraic system where the commutative
laws don't hold. For example, x • y = y • x does not hold for quaternions.

one-dimensional cellular automaton A cellular automaton in which
you trace the evolution of the system by observing a row of cells at time t
followed by the row at time t + 1, and so on.

orbits See function iteration.

pixels Screen picture elements capable of displaying one or more colors.

t;;lossar§J llfl

- (jlossary

quaternions Hyper-complex numbers (complex number pair) used in the
generation of three-dimensional fractals.

random orbits Attracting points determined by iteration of random
starting points by an appropriate geometric procedure.

real number Any number that can be found on the real number line.

real part In a complex number, the component that consists of a real
number, that is , a number that can be found on the number line.

recursive Mathematical, graphical, or geometric procedures that are self
referential.

repelling point A point that escapes.

resolution On a computer screen, the density of the pixels.

scene analysis The process of extracting specific features from a larger
picture or scene.

self-similar In an image, when the structure of the whole is reflected in
every part.

sensitive dependence On initial conditions, a system that's subject to
great variance in later states due to only slight variance in the initial
conditions.

Sierpinski gasket A fractal created by repeatedly dividing a square into
nine equal-sized squares and removing the middle one. Also known as
Sierpinski. carpet.

Sierpinski triangle A fractal generated by repeatedly dividing a triangle
into four self-similar ones and removing the inner fourth one.

stable equilibrium A system that can't easily be moved to a chaotic
state.

strange attractor When the attracting set of an iterated function or
procedures is a fractal.

turbulence A chaotic system condition characterized by disorder on all
scales, with backward eddy currents and circular waves.

two-dimensional cellular automaton A cellular automaton in which a
cell's contents at time tis based on its own contents and the contents of all
its immediate neighbors at time t - 1.

unstable equilibrium A system that can easily move into a chaotic
state.

ljibliography
Barnsley, M. 1988. Fractals everywhere. New York: Academic Press, Inc.

DeAngelis, Tori. January, 1993. "Chaos, chaos everywhere is what the
theorists think." The american psychological association monitor 24
(1): 1, 41 .

Devaney, R, and L. Keen, eds. 1989. Chaos and fractals: The mathematics
behind the computer graphics. Providence, RI.: American Mathematical
Society.

Devaney, R. L. 1989. An introduction to chaotic dynamical systems. New
York: Addison-Wesley.

_____ . 1990. Chaos, fractals, and dynamics. New York: Addison
Wesley.

Devaney, R. 1992. A fi.rst course in chaotic dynamical systems, theory and
experiment. New York: Addison Wesley.

Edgar, G. A 1990. Measure topology and fractal geometry. New York:
Springer-Verlag, Inc.

Escher on Escher: Exploring the infi.nite. 1989. New York: Harry N. Abrams,
Inc.

Falconer, K. 1990. Fractal geometry: Mathematical foundations and
applications. New York: Wiley.

Feder, J. 1988. Fractals. New York: Plenum Press.

Gleick, J. 1987. Chaos: making a new science. New York: Penguin.

Gutowitz, H. , editor. 1991. Cellular automata: theory and experiment. London.

Hofstadter, Douglas R. 1989. Godel, Escher, Bach: An etemal golden braid.
New York: Vintage Books.

Levy, S. 1992. Artifi.cial life : the quest for a new creation. New York:
Pantheon Books.

H. B. Lin, ed. 1984. Chaos, world scientifi.c. Singapore.

Mandlebrot, B. The fractal geometry of nature. New York: W. H. Freeman and
Co.

fJibliogra.phfl •

IB!I Bibliography

McGuire, Michael. 1991. An eye for fractals. New York: Addison-Wesley.

Moon, Francis C. 1992 Chaotic and fractal dynamics, New York: John Wiley &
Sons.

Peitgen, H. 0. and P.H. Richter. 1986. The beauty of fractals. New York:
Springer-Verlag Inc.

Peitgen, H. and D. Saupe, eds. 1988. The science offractal images. New York:
Springer-Verlag Inc.

Peitgen, H., H. Jurgens and D. Saupe. 1992. Fractals for the classroom. New
York: Springer-Verlag.

Peters, Edgar. Chaos and order in the capital markets.

Pickover, C. 1990. Computers, pattem, chaos, and beauty: Graphics from an
unseen world. New York: St. Martin's Press.

Pritchard, J. 1992. The chaos cookbook: A practical programming guide.
Oxford: Butterworth-Heinemann.

Prusinkiewicz, P. and A. Lindenmayer. 1990. The algorithmic beauty of
plants. New York: Springer-Verlag.

Schroeder, M. 1991. Fractals, chaos, and power laws: Minutes from an infinite
paradise. New York: W. H. Freeman.

Stein, D., ed. 1988. Proceedings of the Santa Fe Institute's Complex Systems
Summer School. Redwood City, Ca.: Addison-Wesley.

Stewart, I. 1990. Does God play dice?: The mathematics of chaos. New York:
B. Blackwell.

Wegner, T. and M. Peterson. 1991. Fractal creations. Corte Mader, Ca.: The
Waite Group.

West, Bruce J. and Ary L. Goldberger. July-August, 1987. "Physiology in
fractal dimensions." American Scientist 75: 354-365.

Wolfram, S., ed. 1986. Theory and applications of cellular automata.
Singapore: World Scientific Publishing Co.

References
1For example see the "Back to the Future" movies.

2For example, in George Herbert's Jacula Prudentum, referring to the tragic
Richard III, "For want of a nail a shoe is lost, for want of a shoe a horse is lost,
for want of a horse the rider is lost, [for want of a king, England was lost]." In
Poor Richard's AhnanacBen Franklin prefaced the quote with, "A little
neglect may breed great mischief."

3There might be musical fractals. For example, many canons and fugues have
a recursive self-similarity. In addition, a school of musical thought called
minimalism tends to produce sounds that are inherently self-similar.

4From "On Poetry.A Rhapsody" (1733).

5There is a paradox here, however. If you rigorously set this up as an equation
with limits and solve it for an infinite number of iterations, the answer is that
you do reach the wall. This is counter-intuitive and contradictory. In fact,
this is well known by mathematicians as Zeno's "Achilles Paradox." But so
as not to spoil the fun, let's assume that you can't reach the wall this way.
Who has the time to do it infinitely anyway?

6Let's assume that y is a positive integer.

1Engineers denote the positive square root of -1 as j.

2The term a 2 -b2 i is called the complex conjugate of a 2 + b2 i

3If you are unfamiliar with trigonometry, you may wish to skip this section.

4Notice that these functions are defined in terms of the special constant e,
which is roughly equal to 2.718. e has a special importance to mathematicians,
scientists, and engineers, which is similar to that of 1t and i.

5Note that ei• = 1, thus harmoniously uniting four important constants.

6These numbers are entirely arbitrary.

70rbit is another term for iterated function values.

8Recall that for a real function J, with inverse J- 1, then J-1(/ (x))=x.

ehapter1

ehapter2

1A finite difference equation is a recursive equation that describes a function at ehapter 3
time t in terms of the function at previous time samples, t-1, t-2, and so on.

2The same mechanism has been investigated as a model for wiring local
phone systems.

3An electrocardiogram (ECG or EKG) measures electrical activity in the heart.

Yleferences Im

Chapter4

llil References

1Turbulent flow is found in many natural settings. For example, waterfalls and
crashing waves are clearly turbulent, but here, I'll discuss turbulent flow in
the context of human-made situations.

2Boolean operations are intended to be applied to binary variables and
constants. Binary variables and binary constants can only take on the values
0 or 1.

3Do not use non-ASCII editors such as WordPerfect

A
addition, complex numbers, 25-26
affine transformations, 12-14
algebra, noncommutative algebra, 39
algorithms for fractals, 4-5
AMOEBA.PAS program, 46

companion-disk program, 142
graphics output, 46
Pascal source code, companion-disk, 142
program listings, 81-82

animal images, 45
aspect ratio, 78
attractor points, 6

attractor sensitivity, 30
bifurcation diagrams, 6-8, 7
complex numbers, Julia sets, 29-35
Mandelbrot sets, 35-38
strange attractors, 6

automata, cellular (see cellular automata)

B
Barnsley, Michael, 13, 21, 67, 69, 85, 86, 93,

100, 101. 106, 108, 121. 126, 129, 130-131.
137,138

basin of attraction, boundary scanning
method (BSM), 38, 39

behavior patterns, chaos and the mind, 61
BIFUR.PAS program, 8

bifurcation diagram, 7
companion-disk program, 142
Pascal source code, companion-disk, 142 ·
program listing, 82-84

bifurcation diagram (see also BIFUR.P AS
program; PRICE.PAS program), 6-8, 7

economic systems simulation, 70, 123-124
neuron growth patterns, 59-60

Boolean logic, 72
boundary scanning method (BSM)
basin of attraction, 38, 39
Julia sets, 29, 38

basin of attraction, 38, 39
Mandelbrot sets, 38

basin of attraction, 38, 39
bronchial growth patterns: human body,

chaos, and fractals, 59, 60

C
Cantor sets (see also CANTOR.PAS

program), 17-18
fractal dimension, 19-20
middle third argument, 17

CANTOR.PAS program, 17-18
companion-disk program, 142
Pascal source code, companion-disk, 143
program listing, 84

Cantor, Georg, 17

*Boldface page numbers refer to art

CARPET.PAS program, 14
companion-disk program, 142
Pascal source code, companion-disk, 143
program listing, 85-86

CASTLE.PAS program, 64-65
companion-disk program, 142
graphics output, 64
IFS codes, 65
Pascal source code, companion-disk, 143
program listing, 86-87

CELLl.PAS program (one-dimensional
cellular automata), 71-74

Boolean logic in program, 72
companion-disk program, 142
Pascal source code, companion-disk, 143
program listing, 87-89

CELL2.PAS program (self-organizing cellular
automata), 73-74

companion-disk program, 142
graphics output, 75
Pascal source code, companion-disk, 143
program listing, 89-91

cellular automata, 20, 71-76
Boolean logic, 72
CELLlPASprogram, 71-74, 87-89
CELL2.PAS program, 73-74, 89-91
LIFE.PAS program, 74-76
one-dimensional, 71-74
self-organizing, CELL2.PAS, 89-91
two-dimensional , 7 4-76
von Neumann machines, 71
Wolfram classifications, 71

chaos, 1
definition of chaos, 2-3
fractals and chaos, 20-21
history of chaotic theory, 21
human mind and chaos, 61
infinite roller-coaster concept, 1. 2
nature and chaos (see natural chaos and

fractals)
population dynamics, 41-45
sensitive dependencies, 2
simulating chaos (see simulations)
stable vs. unstable systems, 1

chrysanthemum (see FLOWER2.PAS
program)

CLOUD.PAS program, 53-54
companion-disk program, 142
graphics output, 54
Pascal source code, companion-disk, 143
program listing, 91-93

CLOUDS2.PAS program (three-dimensional
clouds), 54

companion-disk program, 142
graphics output, 55

9nc:lex

':Index -

CLOUDS2.PAS program (three
dimensional clouds), (cont.)

IFS codes, 54
Pascal source code, companion-disk,

143
program listing, 93-96

coastlines
natural chaos and fractals, 57-58
self-similarity, 3

collage theorem, 67
companion disk contents, 141-143
directory creation and use, x
errors, x
modifying programs on disk, x-xi
use of programs on disk, ix-x

complex numbers and functions, 23-38
addition, 25-26
arithmetic with complex numbers, 24-

27
attractor sensitivity, 30
attractors of complex numbers
Julia sets, 29-35
Mandelbrot sets, 35-38

COMPLEX.PAS program, 25
cosine, hyperbolic cosine, 27-29
division, 26-27
Euler's equation, 28-29
exponentials, 28-29
imaginary part, 24
kinematics, 40
modulus, 29-30
multiplication, 26
noncomrnutative algebra, 39
plotting complex numbers, complex

plane, 24, 25
real part, 24
sine, hyperbolic sine, 27-29
subtraction, 25-26
three-dimensional fractals, 39-40
quaternions, 39-40

variables, complex variables, 24
complex plane, 24, 25
COMPLEX.PAS program, 25
composition, function composition, 5
compression ratio, image compression,

66-69
continuous simulation, 42
Conway, John, 74
coordinates
display-screen mapping, 77-79, 78
maximum x- and y-coordinates, code,

80
cosines
hyperbolic, complex numbers, 27-28
JULIA1.PAS program, 30-31, 109-110

Ill ':Index

cross-fractals, 58
FALL.PAS program, 56-57, 100-101
IFS codes, 57

D
DeAngelis, 59, 61
DENDRITE.PAS program, 60
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 96-97

dependencies, sensitive dependencies
and chaos, 2

differential equations, 42
dimension (see fractal dimension)
discrete simulations, 42
display screens (see monitors; Turbo

Pascal graphics)
division, complex numbers, 26-27
Douady's Rabbit

RABBIT.PAS program, from Julia set,
32, 33, 124-126

DRAGON.PAS program, 32, 34
companion-disk program, 142
graphics output, 34
Pascal source code, companion-disk,

143
program listing, 97-98

dynamical systems, 4

E
economic systems simulation (see also

PRICE.PAS), 69-71
bifurcation diagram, 70
logistics, 70

EKG.PAS program, 60
companion-disk program, 142
graphics output, 61
Pascal source code, companion-disk,

143
program listing, 99-100

enhanced graphics adapter (EGA)
monitors.graphics, 77

equilibrium, stable vs. unstable systems,
1

escaping orbits calculations
Julia sets, 29, 38
Mandelbrot sets, 38

escaping points, 5-6
Escher, M.C., recursive generation in

the visual-arts, 16-17
Euler's equation, 28-29
exponential notation, 5

complex numbers, 28-29
Euler's equation, 28-29

F
FALL.PAS cross-fractal program, 56-57
companion-disk program, 142
cross-fractals, 58
graphics output, 57
IFS codes, 57
Pascal source code, companion-disk,

143
program listing, 100-101

FERN.PAS program, 47
companion-disk program, 142
graphics output, 48
IFS transformation rules, 47
Pascal source code, companion-disk,

143
program listing, 101-102

FIB.PAS program, 16
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 103

Fibonacci numbers (see also FIB.PAS),
15-16

FLOWER1.PAS (rose) program, 52
companion-disk program, 142
graphics output, 52
Pascal source code, companion-disk,

143
program listing, 103-104

FLOWER2.PAS (chrysanthemum)
program, 52

companion-disk program, 142
graphics output, 53
Pascal source code, companion-disk,

143
program listing, 104-106

FOREST.PAS program (see also
REDMOSCL.PAS), 49-50, 67

companion-disk program, 142
Pascal source code, companion-disk, 143
program listing, 106-107

fractal dimension, 18-20
fractals, 1

affine transformations, 12-14
algorithms for fractals, 4-5
attractor points, 6
bifurcation diagrams, 6-8, 7
Cantor sets, 17-18
cellular automata study, 20
chaos and fractals, 20-21
complex numbers and functions, 23-38
creating fractals, 4-8
cross-fractals, 56-57
definition of fractals, 3-4

*Boldface page numbers refer to art

dynamical systems, 4
escaping points, 5-6
exponential notation used in functions,

5
Fibonacci numbers, 15-16
fractal dimension, 18-20
function composition, 5
function iteration, 5
generation program, FRACTINT

program, xi
history of fractal geometry, 21
image compression, 66-69
indifferent points, 6
iterated function systems (IFS) (see

also IFS algorithm), 9
matrices, 12
nature and fractals (see natural chaos

and fractals)
population dynamics, 41-45
recursive generation, 14-18

Cantor sets, 17-18
Fibonacci numbers, 15-16

rotating operations, 12
self-similarity, 3-4, 3
Sierpinski triangle, 9-12, 9
simulation fractals (see simulations)
sliding operations, 12
strange attractors, 6
stretching operations, 12
three-dimensional fractals, 39-40

Fractals Everywhere, 13
FRACTINT program, xi
functions
bifurcation diagrams, 6-8, 7
complex numbers and functions, 23-38
composition, 5
iteration, 5

attractor points, 6
escaping points, 5
indifferent points, 6
strange attractors, 6

G
GALAX1.PAS program, 57
companion-disk program, 142
graphics output, 58
Pascal source code, companion-disk,

143
program listing, 108-109

Game of Life (see also LIFE.PAS;
LIFE2PAS), 74-76

genetics,46
Gleick, James, 21
graphics for programs (see monitors;

Turbo Pascal graphics)

*Boldface page numbers refer to art

H
Heisenberg uncertainty theory, 47
human body, chaos and fractals , 58-61

behavior patterns, 61
bronchial growth patterns, 59, 60
EKG.PAS program, 60
human mind and chaos, 61
neuron growth patterns, 59-60
physiological processes, 60

hyperbolic cosine, complex numbers,
27-29

hyperbolic sine, complex numbers, 27-29

I
IFS algorithm (see iterated function

system (IFS))
image compression, 66-69

collage theorem, 67
IFS algorithm, 67-69

imaginary part of complex numbers, 24
indifferent points, 6
inverse iteration method (IIM)

Julia sets, 29, 38
Mandelbrot sets, 38

iterated function system (IFS) algorithm,
9

affine transformations, 12-14
CASTLE.PAS program, 64-65, 86-87
CLOUDS2.PAS program, 54, 93-96
collage theorem, 67
FALL.PAS program, 56-57, 100-101
FERN.PAS program, 47, 101-102
FOREST.PAS program, 49-50, 106-107
GALAXl.PAS program, program

listing, 108-109
image compression, compression

ratios , 67
matrices, 12
MAZEl.PAS program, 65-66, 121-122
random orbits, 10
REDMOSCLPAS program, 126-129
ROCK.PAS program, program listing,

129-130
SEAL.PAS program, 130-131
SEAWEED.PAS program, 50, 131-132
SIERP.PAS program, 85-86
Sierpinski triangle, 9-12, 9
SWAMP.PAS program, 67, 137-138
TREE.PAS program, 47, 138-139

iteration
attracting points, 6
attractor sensitivity, 30
bifurcation diagrams, 6-8, 7
escaping points, 5-6

function iteration, 5
indifferent points, 6
inverse iteration method (IIM), 29, 38
limits, Julia and Mandelbrot sets, 80
strange attractors, 6

J
Julia sets, 29-35, 31

AMOEBAPAS, graphics output, 46,
81-82

attractor sensitivity, 30
boundary scanning method (BSM), 29,

38
basin of attraction, 38, 39

CLOUD.PAS program listing, 91-93
cosines, JULIAl.PAS program, 30-31,

31, 32, 109-110
DENDRITE.PAS program, 60, 96-97
DRAGON.PAS program, 32, 34, 34, 97-

98
Duoady's rabbit, RABBIT.PAS

program,32, 33, 124-126
EKG.PAS program, 60, 99-100
escaping orbits calculations, 29, 38
FLOWERl.PAS (rose) program, 52, 103-

104
FLOWER2.PAS (chrysanthemum)

program, 52, 104-106
generation functions , 79
image compression, 69
inverse iteration method (IIM) , 29, 38
iteration limits, 80
JULIAl.PAS (cosines) program, 30-31 ,

31 , 32, 109-110
JULIA2.PAS (sine) program, 34-35, 35,

110-111
RABBIT.PAS program, Douady's

rabbit, 32, 33, 124-126
Siegel disk, SIEGEL.PAS program, 32,

33, 132-133
sines, JULIA2.PAS program, 34-35, 35,

110-111
SNOWPAS program, 56, 135-137

Julia, Gaston, 21
JULIA1 .PAS (cosine) program, 30-31, 69

companion-disk program, 142
graphics output, 31
Pascal source code, companion-disk, 143
plotting window, 32
program listing, 109-110

JULIA2.PAS (sine) program, 34-35, 35
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 110-111

9ndex B

K
kinematics, 40

L
LIFE.PAS program

companion-disk program, 142
graphics output, 73
Pascal source code, companion-disk, 143
programlisting, 112-115

LIFE2.PAS program
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 115-118

logistics, 70
Lorenz, Edward, 21, 46

M
MANDEL.PAS program, 36

companion-disk program, 142
Pascal source code, companion-disk,

143
plotting window, 32
program listing, 118-119

MANDEL2.PAS program, 37-38
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 119-121

Mandelbrot sets (see also
MANDEL.PAS; MANDEL2PAS), 4,
35-38, 36-37

boundary scanning method (BSM), 38
basin of attraction, 38, 39

economic systems simulation
(PRICE.PAS), 69-71

escaping orbits calculations, 38
filled Mandelbrot set (MANDEL.PAS),

36, 118-119
generation functions, 79
inverse iteration method (!IM), 38
iteration limits, 80
MANDEL.PAS program (see

MANDELPAS)
MANDEL2.PAS program (see

MANDEL2.PAS)
PRICE.PAS program, 69-71
self-similarity displayed in Mandelbrot

set, 4
unfilled Mandelbrot set

(MANDEL2.PAS), 37, 119-121
Mandelbrot, Benoit, 4, 21, 35, 69
mapping a display screen: coordinates,

77-79, 78
matrix-matrices, 12

- :Index

MAZE1.PAS program, 65
companion-disk program, 142
graphics output, 65
IFS codes, 66
Pascal source code, companion-disk,

143
program listing, 121-122

middle third argument, Cantor sets, 17
Milton, John, opening quotation, 41, 63
mind, human mind and chaos, 61
modulus, complex numbers, 29-30
monitors (see also Turbo Pascal

graphics)
aspect ratio, 78
clipping of display, 78-79
color availability, code, 80
color use, 77, 80
distortion of display, 78-79
EGA vs. VGA, for graphics, 77
mapping the display screen:

coordinates, 77-79, 78
Super VGA, 77
type of monitor, code, 79-80

multiplication, complex numbers, 26

N
natural chaos and fractals, 41-61
AMOEBA.PAS program, 46
animal images, 45
behavior patterns, 61
bronchial growth patterns, 59, 60
CLOUD.PAS program, 53-54
CLOUDS2.PAS program, 54
coastlines, 57-58
DENDRITE.PAS program, 60
EKG.PAS program, 60
FERN.PAS program, 47
FLOWER1.PAS (rose) program, 52
FLOWER2.PAS (chrysanthemum)

program, 52
FOREST.PAS program, 49-50
GALAX1.PAS program, 57
genetics, 46
Heisenberg Uncertainty theory, 47
human body, 58-61
human mind, 61
neuron growth patterns, 59-60
physiological processes, 60
population dynamics, 41-45
PREY.PAS program, 41-45
REDMOSCL.PAS program, 50
ROCK.PAS program, 54
scenes from nature, 47-58
SEALS.PAS program, 45
SEAWEED.PAS program, 50

snow FALL.PAS program, 56-57
SNOW.PAS program, 56
TREE.PAS program, 47
weather systems, 46-47

neuron growth patterns: human body,
chaos, and fractals, 59-60

noncommutative algebra, 39

0
orbits, random (see random orbits)

p
physiological processes, fractal

mapping, 60

pixels, graphic picture elements, 77
plane, complex plane, 24, 25
Pope, Alexander , opening quotation, 23
population dynamics, 41-45

continuous simulation, 42
differential equations, 42

Lotus 1-2-3 worksheet, WOLVES.WK3,
42, 143

PREY.PAS program, 41-45, 122-123

PREY.PAS program, 41-45

companion-disk program, 142
graphics output, 43, 44

Lotus 1-2-3 worksheet file, 42, 143
Pascal source code, companion-disk,

143
program listing, 122-123

PRICE.PAS program, 69-71
companion-disk program, 142

Pascal source code, companion-disk, 143
program listing, 123-124

program listings, 81-139
AMOEBA.PAS program from Julia set,

81-82

BIFURPAS program for bifurcation
diagram, 82-84

CANTORPAS program, 84

CASTLE.PAS, 86-87
CELL1PAS, 87-89

CELL2.PAS, 89-91
CLOUD.PAS program from Julia set,

91-93

CLOUDS2.PAS program from IFS
algorithm, 93-96

DENDRITE.PAS from Julia set, 96-97
DRAGON.PAS program from Julia set,

97-98

EKG.PAS program from Julia set, 99-100

*Boldface page numbers refer to art

FALL.PAS cross-fractal program, 100-

101
FERN.PAS from IFS algorithm, 101-102

FIB.PAS Fibonacci number program, 103
FLOWERl.PAS (rose) from Julia set,

103-104
FLOWER2.PAS {chrysanthemum) from

Julia set, 104-106
FOREST.PAS from IFS algorithm, 106-

107
GALAXl.PAS space view from IFS

algorithm, 108-109
JULIA 1 cosine program, 109-110
JULIA2 sine program, 110-111
LIFE.PAS program, Game of Life

simulation, 112-115
LIFE2.PAS program, Game of Life

simulation, 115-118
MANDEL.PAS program, filled

Mandelbrot set, 118-119
MANDEL2.PAS program, unfilled

Mandelbrot set, 119-121
MAZEl.PAS program from IFS

algorithm, 121-122
PREY.PAS program, wolf-caribou

populations, 122-123
PRICE.PAS program, bifurcation

diagram of economy, 123-124
RABBIT.PAS program, Douady's rabbit

from Julia set, 124-126
REDMOSCL.PAS program from IFS

algorithm, 126-129
ROCKS.PAS program from cloud

fractal-IFS algorithm, 129-130
SEAL.PAS program from IFS algorithm,

130-131
SEAWEED.PAS program from IFS

algorithm, 131-132
SIEGEL.PAS program, Siegel disk from

Julia set, 132-133
SIERP.PAS program, Sierpinski

triangle, 133-134
SIERP2.PAS program, Sierpinski

triangle, 134-135
SNOW.PAS program from Julia set,

135-137
SWAMP.PAS program from IFS

algorithm, 137-138
TREE.PAS program from IFS algorithm,

138-139

a
quaternions, 39-40
kinematics, 40
noncommutative algebra, 39

*Boldface page numbers refer to art

R
RABBIT.PAS program, 32

companion-disk program, 142
graphics output, 33
Pascal source code, companion-disk,

143
program listing, 124-126

random orbits, 10
real part of complex numbers, 24
recursive generation, 14-18

Cantor sets, 17-18
CANTOR.PAS program, 84
Fibonacci numbers, 15-16
visual-arts use, Escher's illustrations,

16-17
REDMOSCL.PAS program, 50

companion-disk program, 142
graphics output, 51
Pascal source code, companion-disk,

143
program listing, 126-129

repelling points (see escaping points)
resolution of display screen, graphics,

77
ROCK.PAS program, 54

companion-disk program, 142
graphics output, 55
Pascal source code, companion-disk,

143
program listing, 129-130

rose (seeFLOWERl.PAS)
rotating operations, 12

s
scale factors, code, 80
scaling,69
scene analysis, simulations, 66
SEALS.PAS program, 45

companion-disk program, 142
graphics output, 45
Pascal source code, companion-disk,

143
program listing, 130-131

SEAWEED.PAS program, 50
companion-disk program, 142
graphics output, 51
IFS transformation rules, 50
Pascal source code, companion-disk,

143
program listing, 131-132

self-similarity, 3-4, 3-4
Siegel disks (see SIEGEL.PAS)
SIEGEL.PAS program, 32

companion-disk program, 142
graphics output, 33

Pascal source code, companion-disk,
143

program listing, 132-133
SIERP.PAS program, 10-11

companion-disk program, 142
IFS {affine) transformations, 12-14, 12
Pascal source code, companion-disk,

143
program listing, 133-134

SIERP2.PAS program, 13
companion-disk program, 142
Pascal source code, companion-disk,

143
program listing, 134-135

Sierpinski carpet (see also
CARPET.PAS), 12, 15

fractal dimension, 19-20
Sierpinski gasket, 12
Sierpinski triangle (see also SIERP.PAS;

SIERP2PAS), 9-12, 9, 72
fractal dimension, 19-20
LIFE.PAS graphics output, 73
mapping procedure*, 10-11, 10-1 1
random orbits, 10
Sierpinski carpet, 12
Sierpinski gasket, 12

simulations
CASTLE.PAS program, 64-65
cellular automata, 71-76
computer scene analysis, 66
continuous simulations, 42
discrete simulations, 42
economic systems, 69-71
Game of Life, LIFE.PAS, 74-76
image compression, 66-69
logistics, 70
MAZEl.PAS program, 65
PRICE.PAS program, 69-71
structures and buildings, 64-66
SWAMP.PAS program, 67
turbulent flow, 63-64

sines
hyperbolic, complex numbers, 27-29,

27
JULIA2P AS, 34-35, 35, 110-111

sliding operations, 12
SNOW.PAS program, 56

companion-disk program, 142
graphics output, 56
Pascal source code, companion-disk,

143
program listing, 135-137

stable equilibrium systems, 1
strange attractors , 6
stretching operations, 12

subtraction, complex numbers, 25-26
Super VGA monitors, graphics, 77
SWAMPPAS program, 67

companion-disk program, 142
graphics output, 68
IFS codes, 69
Pascal source code, companion-disk,

143
program listing, 137-138

T
three-dimensional fractals, 39-40

CLOUDS2 PAS program, 54
kinematics, 40
noncommutative algebra, 39
quaternions, 39-40

transformations, affine transformations,
12-14

TREE.PAS program, 47
companion-disk program, 142

Iii 9ndex

graphics output, 49
IFS transformation rules, 47
Pascal source code, companion-disk,

143
program listing, 138-139

Turbo Pascal graphics (see also
monitors), 77-80

aspect ratio, 78
clipping of display, 78-79
code for program graphics, 79-80
color availability, code, 80
coloruse, 77, 80
distortion of display, 78-79
mapping the display screen:

coordinates, 77-79, 78
maximum x- and y-coordinates, code,

80
monitors, Super VGA, 77-80
pixels or picture elements, 77
resolution of screen, 77

scale factors, code, 79, 80
turbulent flow simulation, 63-64

u
uncertainty, Heisenberg uncertainty

theory, 47
unstable equilibrium systems, 1

V
variables, complex variables, 24
Verhulst, P.F., 70
video graphics adapter (VGA) monitors,

graphics, 77
von Neumann, John, 21, 71

w
weather system simulations, 46-47
wolf-caribou population simulation,

PREY PAS program, 122-123
Wolfram, Steven, 71

*Boldface page numbers refer to art

\

