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Forward for Reprinted Edition 

Originally published as Fractal Mania in 1993, this book included a distribution disk with code samples 

and an iron on patch.  This was my fourth book and I am still grateful to McGraw-Hill and publisher Roland 

Phelps for supporting me when I was still relatively unknown.  

When Fractal Mania1 was published, chaos theory and fractals were raging, even influencing popular 

literature and movies (e.g. Jurassic Park). Within a few years, however, these ideas largely faded from 

public attention. I also eventually lost interest in this line of research.  

I had intended the book for self-study or use in appropriate middle or high school courses, but never learned 

if there was widespread adoption as such. The sales figures presented to me suggest that the book was 

mostly sold one or two copies at a time to individuals. It was successful enough, however, to be translated 

and reprinted in Japanese, Hebrew and Standard Chinese. After several printings, and many years, 

McGraw-Hill chose not to republish the book. Under the terms of our contract the copyrights reverted back 

to me upon request. But I wasn’t sure what to do with the book. 

Recent world events have made me reconsider the importance of understanding chaotic systems, second 

order effects and the unintended consequences of human actions – topics which were teased. I considered 

reconstructing Fractal Mania around those topics and releasing it with a different publisher. Instead, I am 

making it available for free.  

The book is suitable for homeschooling or as a classroom supplement. Or, it could be used for informal 

family study and discussion. I hope adults will find some value in the information contained herein and 

their interest in dynamical and chaotic systems piqued for further exploration. 

Writing and Code 

In retrospect I can see the evolution and improvement in my writing over 30 years. Fractal Mania was 

written to reach a pre-College audience and the copy editor made sure that level was enforced, but my own 

writing was also less sophisticated then. But I think the writing is quite accessible and understandable to 

almost anyone, and that was my intention all along. 

While all the code samples in the book are in Pascal, C code equivalents are available from my Website at 

https://phil.laplante.io/resources.php. The Pascal code is not offered in electronic form but could easily be 

extracted from the PDF file. Use these at your own risk. 

Future Editions and Engagement 

Depending on the response I get to this version, I may rewrite and expand the book significantly. I welcome 

your suggestions for future editions at phil.laplante.io. 

 
1 I never loved this title – it was determined by the publisher. 

https://phil.laplante.io/resources.php
mailto:plaplante@psu.edu


I am available for a customized, virtual talk to your company, group, class, etc. on Chaos Theory, 

Dynamical Systems and other topics discussed in this book and related items. Contact me for fee structure 

and availability at phil.laplante.io.  

Other Books 

My complete set of published books can be found here: 

https://phil.laplante.io/books.php 

One particular recommendation is:  

Phillip A. Laplante, Technical Writing: A Practical Guide for Scientists, Engineers and Nontechnical 

Professionals, Second Edition, CRC Press/Taylor & Francis Publishing, 2019. 

Copyright, Disclaimers and Permissions 

Copyright for this book is retained by the author. Permission is granted only to download the book in 

electronic form. You may make and distribute hard or electronic copies of this text for personal and 

classroom use only. No permission is granted to resell or repackage the information contained herein for 

any other purpose. No guarantees or warrantees, implied or explicit, whatsoever, are made and the author 

will not assume any responsibility for any uses of the information herein. No guarantees or warrantees are 

made for any of the code shown in the book or available from the author’s website. All code is intended for 

demonstration and entertainment purposes and are not for any commercial or public use. No endorsements 

of any product or service are made. Use the information contained in this book at your own risk. 

© Copyright 2020, Phil Laplante 

mailto:plaplante@psu.edu
https://phil.laplante.io/books.php
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}Vl.athematical 
background 

9ntroduction 
The purpose of this book is to introduce fractals and chaos theory to those 
with no more formal mathematical training than basic algebra, geometry, and 
perhaps some trigonometry. The emphasis is on natural and human-made 
phenomena that can be modeled as fractals and on the applications of 
fractals to computer-generated graphics and image compression. Because I 
keep the mathematics to a minimum, I rely on intuitive descriptions, 
computer-generated graphics, and photographs of natural scenes to make 
my points. I also present a brief history of the evolution of fractal and chaos 
theory. For those with access to an IBM-compatible personal computer, the 
book includes a diskette with executable programs and source code 
illustrating most of the concepts described in the text. 

I assume that you have a basic knowledge of algebra and geometry. In 
particular, you should be familiar with functions of real numbers, and it would 
also be helpful if you were familiar with a little trigonometry such as sines 
and cosines. However, I develop most of the needed mathematical 
background along the way. 

Organization While this text is primarily intended for self-study, it could be used to 
dt flexibilit~ supplement several courses at the high-school level. For example, this book 

could be used to supplement the following courses: 

How to use 
the programs 

on the disk 
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• Pascal Programming 
■ Precalculus 
■ Geometry 
■ Computer Graphics 

The text can also be used in mathematics courses for undergraduates who 
are not science majors. 

The disk included with this book contains all of the programs described in 
the text. These programs were written using Borland's Turbo Pascal 5.5 
compiler, and they require an IBM-compatible PC with an Intel 80286 or 
superior processor and an EGA or VGA monitor. The code is written to take 
advantage of a numeric coprocessor if it's available. 

For a quick demonstration of the programs, place the disk in drive a : of your 
system (or another appropriate drive), and type: 

a: 



Hit Enter to make a : the active drive. Then type: 

demo 

Hit Enter. Now sit back and enjoy the show. Depending on the speed of your 
computer, the demonstration could take 5-15 minutes. You can abort the 
demo by pressing the Ctrl-Break key combination. 

To run the programs, create a directory called "FRACTAL" by entering the 
following command from the root directory of your hard disk. (Be sure your 
logged drive is the hard disk.) 

mkdir FRACTAL 

Change directories to this new one by entering the command: 

cd fractal 

Copy the programs from the enclosed disk by entering the command: 

copy a:*.* 

In the previous command, a is assumed to be the drive containing the 
distribution diskette included with the book. You'll have to be in the 
FRACTAL directory to run the programs, unless you want to put the 
FRACTAL directory in your path (see your DOS manual for directions). To run 
the executable program corresponding to the source of a particular program, 
say JULIA1.PAS, simply type: 

JULI Al 

If you have Turbo Pascal version 5.5 or greater, you can modify the programs 
and have even more fun. (The programs might work with older versions of 
Turbo Pascal, but the programs were not tested in these environments). In 
many cases, especially with the programs that display Julia and Mandelbrot 
sets, changing one line will lead to vastly different and fascinating results. I 
strongly encourage you to study the programs and play with them. 

If you don't have a compatible version of Pascal, or if you have an 
incompatible monitor, it should be relatively easy to modify the programs to 
run in your particular environment. Furthermore, if you're using another 
structured programming language, such as C or Ada, most of these programs 
should easily translate. If you program in BASIC, the code should serve as an 
easy-to-follow specification so that you can rewrite the routines. 

I didn't build extensive error checking into the programs, nor did I try to 
make them too clever. I wanted to keep them short but simple enough to 
encourage you to look at them critically and modify them as desired. You can 
add error checking if you like. 

Finally, depending on your computer, many of these programs (especially 
those that produce Julia sets) will run very slowly and could possibly take 

}Vl.odifying 
the programs 
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hours to produce the final image. Although I could have optimized these 
programs to run faster, the result would have been difficult to follow. I opted 
to trade fast performance for code that's clear and readable. Also, indeed, the 
slow performance of some of the programs aptly demonstrates the inherent 
trade-offs between the memory required to store a pixel image and the time 
needed to regenerate that image using compression techniques, which the 
fractal programs represent. I encourage you, however, to experiment with the 
programs and try to optimize them by taking advantage of symmetry and 
mathematical tricks. In doing so, you can gain a better understanding of the 
underlying phenomena. 

Although I've provided you with code to generate many different kinds of 
fractals, a free program is available that will generate many other fractal images. 
The program, FRACTINT, was written and is distributed by the STONE SOUP 
GROUP. The FRACTINT executable program, documentation, and even source 
code are available on CompuServe in the "fractals" library of the COMART 
forum. To get more information from CompuServe, call (800) 848-8199. 

Disclaim.er I make no guarantees for the performance of the supplied program code on 
any given machine. 
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What is chaos? 
What are fractals? 

"First there was Chaos, the vast immeasurable abyss, 
Outrageous as a sea, dark, wasteful, wild." 

- John Milton, Paradise Lost (1674) 

In this chapter I look at chaos, instability, stability, and other ideas that relate 
to fractals . I define the term fractal, show some early examples, and look at 
the history of fractals , chaos, and dynamical systems. 

Consider the section of infinite roller coaster shown in FIG. 1- lA. The car is 
located in the trough and is still. If you shove the car gently in either the front 
or the back, it's clear that friction, gravity, and rotational kinetics will act to 
return the car to the trough. Within certain limits, it doesn't matter how far 
you push the car to the right or the left, the car consistently returns to the 
same place. This system is said to be in stable equilibrium. 

Now consider the section of the same roller coaster shown in FIG. 1-lB. In this 
case, if you gently shove the roller coaster in the front or the back, the car 
begins a wild ride, and it's unclear where the car stops. This system is said to 
be in unstable equilibrium. The concepts of stable and unstable equilibrium, 
as well as sensitivity to initial conditions (in this case where the car starts), 
are crucial in the study of fractals and chaos. 

Stable/unstable 
systems 

What is chaos? What are fractals? II 



What is chaos? 

B Jractal jVlania 

(A) (B) 

1-1 Two sections of the infinite roller coaster. 

Chaos is derived from a Greek verb that means "to gape open, " but in our 
society, chaos evokes visions of disorder. In a sense, chaotic systems are in 
unstable equilibrium-even the slightest change to the initial conditions of 
the system at time t leads the system to a very different outcome at some 
arbitrary later time. Such systems are said to have a sensitive dependence on 
initial conditions. 

Some system models-such as that for the motion of planets within our solar 
system-contain many variables, yet still are accurate. With chaotic systems, 
however, even when there are hundreds of thousands of variables involved, 
no accurate prediction of their behavior can be made. 

For example, the weather is known to be a chaotic system. Despite the best 
efforts of beleaguered meteorologists to forecast the weather, they very 
frequently err. There's a famous anecdote, which you might have heard, 
about the movement of a butterfly's wings in Tokyo affecting the weather in 
New York. This is typical of a chaotic system and illustrates, apocryphally, 
sensitive dependence on initial conditions. 

Chaotic systems appear in virtually every aspect of life. Traffic patterns tend 
to be chaotic-the errant maneuver of even one car can create an accident or 
traffic jam that can affect thousands of others. Many people feel that the 
stock market is a chaotic system because the behavior of one investor, 



political situation, or corporation can alter prices and supply. Finally, those of 
you who enjoy science fiction are familiar with story lines where a time 
traveler goes back and alters a course of events, even slightly, with traumatic 
consequences. 1 Just as the ripples from a pebble tossed into a lake affect the 
farthest shore, our slightest actions can have far-reaching repercussions.2 

There's a rigorous and precise definition of a fractal, but that's beyond the 
scope of this text. For our purposes, a fractal is an image3 with an infinite 
amount of self-similarity. 

What is self-similarity? In natural and human-made phenomena, self­
similarity means that the structure of the whole is often reflected in every 
part. For example, consider a section of coastline photographed from space. 
(See FIG. 1-2.) You can see that the view from space is similar to the one from 

••• 

Space 10 miles 1inch 

10 miles away, 1 mile away, 1 foot away, 1 inch away, and so on. This is 
exactly the kind of self-similarity that characterizes fractals. 

Let's consider another example of self-similarity. Look at the image in FIG. 
1-3. Notice that there are several globes. Look closely at them. Can you see 
that these globes are just a copy of the larger image? The globes also have a 
number of "pimples" on them. If you look at them closely too, you'll see that 
they're also a small reproduction of the larger image. If the image in the 
figure had an infinite level of detail, you could examine the picture to any 
magnification and still find a copy of the larger image. 

What are 
fractals? 

1-2 
lncreasing/0 nearer 
views of a section 
of coastline. 
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1-3 
'The Mandelbrot set. 

Howare 
fractals 

created.? 

- Jractal }Vlania 

Fractals tend to be jagged and irregular. It 's not surprising, then, that they 
were named by mathematician Benoit Mandelbrot after the Latin word 
fractus, meaning broken. 

It's unlikely that you could simply "discover" an image that had the property 
of self-similarity. In the two previous examples, the coastline and the 
Mandelbrot set, the first was fabricated for illustration (although it could, in 
theory exist) and the second was created via a careful mathematical 
procedure. How do you find such mathematical procedures? 

Before I answer this question, let's explore the place where the fractal lives, 
the realm of dynamical systems. The study of dynamical systems is a subfield 
of mathematics that's concerned with the repeated application of an 
algorithm. 

What's an algorithm? An algorithm is simply a recipe or set of rules that 
describes some process. A cookbook contains many algorithms for baking 
cakes and other goodies. The assembly instructions for a bicycle represent an 
algorithm. A computer program is simply an encoded form of an algorithm 
and it's these types of algorithms that you see in this book. 



Algorithms can be presented in many ways: in words, in flowcharts or other 
pictures, in pseudocode, or in mathematical notation. I'll be using combinations 
of words and mathematical notations throughout this text to describe the 
algorithms needed to generate fractals. These algorithms involve the application 
of some function defined on real or complex numbers (to be defined later}, or the 
application of some graphical or geometric procedure. I'll show how repeated 
application of either type of algorithm can result in a fractal. 

Let's begin developing the basic vocabulary needed to describe the 
algorithms needed for making fractals. Consider a function f, which is just a 
mapping or rule, from the real number line onto itself. Let's denote this: 

f:ffi ➔ ffi 

X ➔ f(x) 

The symbol ffi stands for the real number line, and the arrow, ➔, denotes the 
fact that the function f is a rule that relates each real number x with another 
real number f (x). At this point you might want to get a calculator and use it 
as you read the following discussion. 

Consider the function f (x) = x2. If you enter the number 2 and press the "X2" 
key, you get 4. Press it again, and you get 16, and so on. This procedure is 
called function composition. The composition off (x) with itself is denoted 
f (f (x)) and it simply means apply the rule f to value x, then apply the rule f 
again to the result. If you compose the result with the function f again, 
denoted f(f (f (x)}}, you've performed another iteration of the composition off. 
You can continue composing f by itself many times, a procedure called 
function iteration. For simple functions, iteration is easily performed with a 
calculator. 

Continuing with the example, if you compose the X2 function enough times, 
your calculator will probably revert to exponential notation and display: 

3.4028 E 38 

That means 3,4028 times the number 1 followed by 38 zeros. Eventually, your 
calculator will give up and display something like 

ERROR 

That means that the number obtained was too large for your calculator to 
hold, even using exponential notation. You can then say that the point 2 
iterated under the function f (x} = x 2 escaped, or it tended towards infinity. 
Functions that tend toward minus infinity at a point under iteration also 
escape. 

For example, the point Xo = 2 iterated under the function f (x) = - x2 will tend 
towards negative infinity. (Try it on your calculator.) Points that escape under 

Attracting dt 
escaping points 
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iteration are also sometimes called repelling points or are said to be repelled 
under iteration. 

Now consider iterating any point that 's larger than O but less than 1, say x0 = 
.5 under the function f (x) = x 2• Enter this number into your calculator and 
press the "X2" key a few times. You'll notice that the product gets smaller 
and smaller. Eventually, the exponential notation will be displayed, but this 
time it will have a negative exponent. It might look like: 

2 .3283 E - 10 

That means that the number is 22.3283 times 0.0000000001. This is a very 
small number indeed! If you keep pressing the "X2" key, the ERROR indicator 
might be displayed. This doesn 't mean that the point escaped, rather the 
number became so close to zero that the calculator could no longer calculate 
the function X2 without making an error. In this case, the iterated function 
tended towards a single point, 0. You could say that O is an attractor of this 
function because the iterated function tended toward this point. If you iterate 
this function with a starting value between - 1 and 1 (noninclusive) the 
iterated result will always be 0. 

Some points act as neither attractors nor repellers under iteration. Such 
points are said to be indifferent. You can use your calculator, or write 
programs, to determine attracting, repelling, or indifferent points for 
functions . For example, try to determine some attracting, repelling, 
indifferent points for the following functions: 

1. f(x) = x3 -1 

2. f(x) = - 2x(2-x) 

3. f (x) = sin(x) 

4. f (x) = 1/x 

5. f (x) = si~(x) 

Later on, I'll look at the collection of all attracting points for some iterated 
functions or iterated geometric procedures. When the attracting set of an 
iterated function or procedures is an infinitely self-similar set (a fractal) then 
the attracting set is called a strange attractor. 

rJifurcation Let's look at the set of attractors for some functions defined on real numbers. 
diagrams Suppose you 're given the simple polynomial function: 

f(x) =r + C 

- Jractal }Vlania 



for some real constant c, and you compose the function with itself many 
times. Let's try this by picking some c, say c = - 1.1 and set x = 0. Using a 
calculator, you'll see that: 

f (0) = 02 - 1.1 = - 1.1 

Iterating, you find f (f(O)), that is: 

f(f(0)) = f(-1.1) = (-1.1)2 - 1.1 = .11 

Now finding f(f (f (0))), you have: 

f (f(f(0))) = f(.11) = (.11)2- 1.1 = -1.0879 

Applying the rule f to this result again gives: 

f(f(f(f(0)))) = (-1.0879)2 = .08 

You could continue this indefinitely, but you should see that the result of the 
composed functions seem to bounce back and forth between a number 
somewhere near - 1.0 and another number near .1. Suppose you compose f 
itself many times, say 200, and you do this for a range of values of c, for 
functions that look like: 

f (x) = x2 + c 

A strange and beautiful thing happens. 

If you compose this function many times, plotting points after each 
composition, and you do this for many values of c, the resulting image is 
called a bifurcation diagram, which is shown in FIG. 1-4. The term 
"bifurcation" is used because the image divides into two distinct bands of 
points. Like a fractal, it's also self-similar. 

~ 

1-4 
/3ifurmtion diagram for 
f (x) = X2 + c with x = 0 
and various values of c 
produced using 
13 rJ-!A R.PAS. 
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To see this, let 's regenerate FIG. 1-4 by running the program BIFUR.PAS. The 
program prompts you for a scale. You should enter a "1" in response. The 
program will then begin to display the bifurcation diagram as it sweeps 
values of c. 

Notice the bands of stability (the "bald spots") where the function only takes 
on two values instead of infinitely many. The interpretation of these will 
become clearer later. Finally, by choosing different scaling factors, you should 
see that the bifurcation diagram is self-similar. 

BIFUR.PAS is a straightforward program. You choose an appropriate scale 
factor based on the user input number sf and the maximum x-coordinate 
Ma x X. Some experimentation shows that dividing by a factor of 8 yields a 
better picture. The code for the scaling looks like this: 

scale : = sf•M axX/8 ; ( calculate overall sca l e f actor l 

Based on experience, I chose a starting value for c as -2.0. You then sweep 
the value of c, adding enough for each increment in the x-axis, so that the 
final value of cis .25. 

Within the loop, you initialize the value x = 0 and compose the function f = x 2 

+ c by itself 200 times. Ignore the first 50 iterations to allow the composition 
to stabilize. Then plot the point. The salient code looks like: 

C : = -2.0 ; 
for i : = 1 to MaxX do 

begi n 
X : = 0 . 0; 
c : = c + 2. 25/ Ma xX ; 
for j : = 1 to 200 do 
begin 

X : = X*X + C ; 

( set starting po i nt l 

ca l cul ate or bi t about x = 0 l 
iterate c l 
ca l cul ate or bit afte r 200 it erati ons } 

if j > 50 t hen skip fi rst 50 i terat i ons l 
begi n 

pu t pixel( i, round( MaxY/2 + x•sca l e) , j di v Ma xCo l or) ; 
end 

end 
end 

There is one subtlety. You output the pixel with an x-coordinate of i. which 
controlled the sweep of c, and a y-coordinate of the composed function 
value, suitably scaled and offset to the middle of the screen. To make the 
diagram pretty, I picked a different color based on the number of 
compositions of the function f that were applied. 

Bifurcation diagrams are amazingly simple little fractals that have applications 
that you'll see later. You can experiment with BIFUR.PAS by playing with the 
function f and the sweep value for c. Be careful, though, because the function 
might give you integer overflow problems and "blow up." 



Another way to generate fractals is by the repeated application of special 
geometric procedures. Such fractals are called iterated function systems (IFS). 
A nice two-dimensional fractal that can be generated this way is the 
Sierpinski. triangle. 

Consider a filled triangle. Suppose you remove a section from the middle so 
that the result is three copies of the original at ¼ size, as shown in FIG. 1-5. If 
you continue to apply this rule to the three triangles, and then the nine 
resulting triangles and so on, you obtain the fractal shown in FIG. 1-6. Let's 
look at how the Sierpinski triangle is created with a Pascal program. 

1-6 
Ii Sierpinski triangle. 

'the 
Sierpinski 
triangle 

1-5 
Rule for creation of a 
Sierpinski triangle. 
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1-7 
Sierpinski triangle 

mapping procecture. 

11:1 Jractal jVlania 

The easiest way to generate such a picture is to generate random orbits and 
look for attracting points. To do this, you need to encode the graphical 
procedures in Pascal, select a random starting point, and apply the rule to it a 
fixed number of times. Repeated application of these rules will generate a 
strange attractor, that is, a fractal. Program SIERP.PAS on your disk applies 
the algorithm that I'll describe. 

To make an equilateral Sierpinski triangle, map the random starting point into 
one of three randomly chosen rules corresponding to one of the three 
triangles in the large triangle with the center removed. Figure 1-7 shows how 
to map an arbitrary point into one of three possible sites. 

If you aren't already familiar with the Turbo Pascal screen, I suggest that you 
review appendix A, or simply note in the following discussion that Turbo 
Pascal assigns the coordinate (0,0) to the upper left-hand comer of the 
screen. 

If the maximum x-coordinate is Ma xX and the maximum y-coordinate is 
Max Y, then the large triangle has vertices: 

Vi = (0, MaxY) 

V2 = (MaxX/2,0) 

V3 = (MaxX,MaxY) 

It turns out that if the random point is halfway to the outer vertex of one of the 
three triangles inside the larger triangle, then the random point is inside one 
of them. For the three triangles within it, this is also true, and so on. To find 
the halfway points to the outer vertices, use the rules illustrated in FIG. 1-8. 

Rule one is: 

(x' ,y') = (x/2, (MaxY + y)/2) 

That will find the point halfway between point (x, y) and vertex Vi. The 
following is rule two: 

(x',y') = (MaxY/2 + x,y/2) 



V2 (MaxX/2,0) 

V1,__ _____ _._ ______ _, 

(0, MaxY) 

(x,y) 1-8 
Vertices for Sierpinski 
triangle mapping 
procedure. 

Use rule two for the point halfway between point (x, y) and vertex v;. Here's 
the third rule: 

(x' ,y') = ((MaxY + x)/2 + x, (MaxY + y)/2) 

The third rule finds the point halfway between point (x, y) and vertex Vj. 

If you continually choose one of the three mapping rules and apply it to the 
coordinate just mapped, you generate points at finer and finer resolutions 
within the Sierpinski triangle. 

The main code, which maps points into one of the three inner triangles, and 
found in SIERP.PAS is: 

1: begin 
X = x div 2; { find 1h way point to Vll 
y = (MaxY + y) div 2 

end: 
2: begin 

X = (MaxY div 2 + x) div 2; { find½ way point to V2 ) 

y = y div 2 
end; 

3: begin 
X (MaxY + x) div 2; { find½ way point to V3) 
y (MaxY + y) div 2 

end 

Note that you use MaxX = MaxY to ensure that no distortion is introduced 
(see appendix A for an explanation). Also note that in the Pascal routine you 
use di v 2 instead of / 2 to ensure an integer quotient. Finally, you perform 
1000 iterations before plotting to be sure that the fractal has begun attracting. 
You can apply the procedure to any triangle-equilateral, right, or otherwise. 

What is chaos? What are fractals? Ill 



Another fractal that can be constructed in a similar way is a Sierpinski. gasket 
or Sierpinski. carpet. To make a Sierpinski carpet, start with a square, divide it 
into nine equal-sized squares, and remove the middle one. Proceed with the 
remaining eight squares, repeatedly applying the same procedure. You'll see 
a Sierpinski carpet shortly. 

':Jterated The geometric rules applied to create the Sierpinski triangles and other fractals 
~unction can be represented mathematically as a set of operations including sliding, 
I' stretching, and rotating. These types of mathematical operations are called 

system affine transformations. They can be easily coded using matrix operations. 
transformations 
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A matrix consists of rows and columns that hold numbers. If the matrix 
shown is called "d, ", then the number in the first row, first column is denoted 
d[1, 1]; in the second row first column it's denoted d[2, 1], and so on. In 
general, the number in row i and column j is denoted d[i,j] . Special rules 
involving the multiplication and addition of the numbers in the matrix 
simplify the description of affine transformations. I won't review matrix rules 
here, but I encourage you to pick up a text on linear algebra. 

Table 1-1 shows a matrix-encoded form of the rules that generate a Sierpinski 
triangle. Here, for example, the d[1,5] position contains the number 25. The 
last column has a special meaning in that it determines the chance or 
probability that the transformation described in that row will be used. For 
example, in the Sierpinski triangle, as in SIERP.PAS, the three 
transformations are equally likely. 

Table 1-1 
IFS transformation rule for the Sierpinski triangle. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.5 25 1 0.33 

2 0.5 0 0 0.5 1 50 0.33 

3 0.5 0 0 0.5 50 50 0.33 

Let's look at what the transformations in the rows of the matrix do. Each 
transformation maps a point (x,y) into a new point (x' ,y') by handling each 
coordinate separately. The transformation in row i obtains a new x­

coordinate, x', by transforming the given x-coordinate of the point by the 
mapping: 

x' = d[i, l]x + d[i, 2]y + d[i, 5] 

The transformation in row i transforms the y-coordinate by the rule: 

y' = d[i, 3]x + d[i, 4]y + d[i, 6] 



In his book Fractals Everywhere (Barnsley 1988), Michael Barnsley gives the 
matrix form codes to generate a variety of iterated function system fractals. 
(He calls programs used to generate fractals this way the "Chaos Game.") For 
example, if you look at SIERP2.PAS file on the distribution disk, you'll see a 
program that implements the IFS code to generate a Sierpinski triangle that's 
the same as the one we made before. 

For example, row one specifies that the following transformations are to be 
applied with a probability of 0.33, or one-third of the time: 

x' = 0.5x + Oy+ 25 

y' =Ox+ 0.5y + 1 

If you were to apply these transformations to the point (3,2) you'd get: 

x' = 0.5 • 3 + 0 • 2 + 25 = 26.5 

y' = 0 •3 + 0.5 ·2 + 1 = 2 

Thus, the transformed point is (26.5,2). Try applying the transformations to 
this point for four iterations. 

You can take advantage of the simplicity of the matrix form of the IFS in 
many fractal programs. For instance, in program SIERP2.PAS, the code that 
holds the matrix data is: 

initialize IFS data array l 

d[l,1]: = 0.5; d[l,2]: = 0: d[l,3]: = 0: d[l,4]: = 0 . 5; d[l,5]: = 25: d[l,6]: = 1: 
d[2,1]: = 0.5; d[2,2]: = 0: d[2,3]: = 0: d[2,4]: = 0.5; d[2,5J: = 1: d[2,6J: = 50 : 
d[3,1J: = 0.5; d[3,2J: = 0: d[3,3J: = 0: d[3,4J: = 0.5; d[3,5]: = 50; d[3,6J: = 50: 

The code to pick one of the three rows that hold the transformation and apply 
it is: 

k = random(3) + 1: pick random row l 
x : = d[k,l]*x + d[k,2]*y + d[k,5]: { transform coordinates 
y: = d[k,3]*x + d[k,4]*y + d[k,6]; 

Isn't this code much more compact than that in SIERP.PAS? This code is also 
quite fast-much faster than the code that you'll see in the next chapter. 
Finally, it's an amazing fact that by simply changing the data in the IFS code 
table, you can generate vastly different fractal images. 

For example, to make the Sierpinski carpet, simply change the data matrix in 
program SIERP2.PAS to that shown in TABLE 1-2. 
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Table 1-2 
IFS transformation rule for the Sierpinski carpet. 

1 2 3 4 5 6 probability 

1 0.33 0 0 0.33 1 1 0.125 

2 0.33 0 0 0.33 MaxY 1 0.125 

3 0.33 0 0 0.33 1 MaxY 0.125 

4 0.33 0 0 0.33 MaxY MaxY 0.125 

5 0.33 0 0 0.33 MaxY/2 1 0.125 

6 0.33 0 0 0.33 MaxY MaxY/2 0.125 

7 0.33 0 0 0.33 1 MaxY/2 0.125 

8 0.33 0 0 0.33 MaxY/2 MaxY 0.125 

This was done in program CARPET.PAS, which displays the Sierpinski carpet 
shown in FIG. 1-9. In this case, the new data IFS array is: 

d[l,1]: = 0.33; d[l,2]: = 0; d[l,3]: = 0; d[l,4]: = 0.33; d[l,5]: = 1; d[l,6]: = l; 
d[2,l]: = 0.33; d[2,2]: = 0; d[2,3]: = 0; d[2,4J: = 0.33; d[2,5J: = MaxY; d[2,6]: = 1; 
d[3,1J: = 0.33; d[3,2]: = 0; d[3,3J: = 0; d[3,4]: = 0.33; d[3,5]: = l; d[3,6]: = MaxY; 
d[4,1J: = 0.33; d[4,2J: = 0: d[4,3]: = 0; d[4,4]: = 0.33; d[4,5]: = MaxY; d[4,6]: = MaxY; 
d[5,1] : = 0.33; d[5,2] : = 0; d[5,3]: = 0; d[5,4]: = 0.33; d[5,5]: = MaxY div 2; d[5,6J: = 1; 
d[6,1]: = 0.33; d[6,2]: = 0; d[6,3J: = 0; d[6,4]: = 0.33; d[6,5]: = MaxY; d[6,6]: = MaxY div 2; 
d[7,1]: = 0.33; d[7,2]: = 0; d[7,3]: = 0; d[7,4]: = 0.33; d[7,5]: = l; d[7,6]: = MaxY div 2; 
d[S,1]: = 0.33; d[S,2]: = 0; d[S,3]: = 0; d[S,4]: = 0.33; d[S,5]: = MaxY div 2; d[S,6]: = MaxY; 

necursive 
generation 
of fractals 
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The code to pick the random row is: 

k : = random(S) + l; pick random row} 
x : = d[k,l]•x + d[k,2J•y + d[k,5]; { transform coordinates 
y : = d[k,3J•x + d[k,4]•y + d[k,6]; 

You can experiment with SIERP2.PAS, CARPET.PAS, or the other programs 
using the IFS data algorithm that you'll see later. Experimenting can produce 
some amazing results, and you'll see several of these in chapters 3 and 4. 

Most fractals are generated by applying a certain procedure infinitely (or at 
least a very large, albeit finite number of times). I generated the first fractal, 
the bifurcation diagram, by repeated iteration of a function. In the last two 
fractals, I iterated random functions by applying repeated geometric 
procedures. Another way to apply geometric procedures, however, is by 



coding them so that they're self-referential, or recursive. A quote from 
Jonathan Swift4 captures the spirit of recursion: 

"So, naturalists observe, a flea 
Hath smaller fleas that on him prey; 
And these have smaller fleas to bite'em, 
And so proceed ad infinitum. 
Thus every poet, in his kind 
Is bit by him that comes behind." 

In mathematics, self-reference usually implies recursion in the sense that a 
function is defined in terms of itself. For example, consider the numbers in 
the famous Fibonacci sequence. Let the f(O) = 0 and let f (1) = 1 be the first 
two numbers in the sequence. Then the nth number in the sequence f(n) is 
given by: 

f (n) = f (n - 1) + f (n - 2) 

1-9 
Sierpinski carpet. 
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The nth number in the sequence is just the sum of its two predecessors. Then 
the first few numbers in the sequence are: 

01 1 2358 ... 

What would the twenty-third number in the sequence, denoted /(23) be? 
Well, you say, it's just /(22) + /(21). However, what are these? You'd have to 
perform a large number of calculations to find f (23) this way. It 's an amazing 
fact , and part of the allure of mathematics, that you can find an algebraic 
solution for f (23) or f (n) in general. For the Fibonacci sequence, with n ~ 0: 

f (n) = 1 ( 1 +2 v'5 r -1 ( 1 -2 v'5 r 
So, if you plug n = 23 into the formula, you get: 

f (23) = 28657 

Just for fun, try to find f (22) and f (21) using this formula, then show that: 

f (23) = f (22) + !(21) 

In computer science, certain programming languages, such as Pascal, 
support recursion in the sense that procedures can call themselves. For 
example, consider the program FIB.PAS, which finds the nth number in the 
Fibonacci sequence. It makes use of the self-referential function, fi bo, given 
in the following: 

function fibo(i : in t eger) : i nteger; 
{ a recurs i ve fun ct io n l 
begin 

if i = 0 then 
f i bo : = 0 

else 
i f i = 1 then 

fibo : = 1 
el se 

fibo : = f i bo(i - 1) + fibo(i - 2) 

end; 

Notice how the function calls to itself. You should study the program and try 
running it with any number between O and 23 (any other numbers will cause 
overflow problems). You'll be seeing other recursive programs later in this book. 

Recursion and self-reference can be found in visual art as well. For example, 
the work of celebrated artist M. C. Escher demonstrates an incredible insight 
into these concepts. For example, in the work Fish and Scales (woodcut, 
1959), the scales of the fish are themselves fish at many levels. Also, in 
Escher's Circle Limit I (woodcut, 1958) and Circle Limit II (woodcut 1959), a 
high degree of self-reference is present. To see these and other beautiful 
Escher works, and read his own insightful narrative, see "Escher on Escher: 



Exploring the Infinite." (Abrams 1989). To learn more about recursion in 
mathematics, music, art, and life, read Godel, Escher, Bach: An Etemal 
Golden Braid, the Pulitzer Prize winning book by Douglas Hofstadter. 
(Hofstadter 1989). 

To illustrate mathematical recursion again, let's look at the fractal created 'Che Cantor set 
when we recursively apply the following procedure to a section of the real line. 

remove the middle third of the real line, then remove the middle third of the 
remaining line segments, and so on. 

This procedure, called the Cantor middle third argument, was introduced by 
mathematician Georg Cantor in the late nineteenth century and has a very 
powerful result. The effect of applying the procedure an infinite number of 
times is illustrated in FIG. 1-10. The resulting figure is sometimes called the 
Cantor set, and it's a fractal in one-dimensional Euclidian space. If you look 
at it closely, you should see that there are infinite levels of self-similarity. 

When you perform the Cantor procedure an infinite number of times, a very 
strange thing happens-you never completely eliminate the line. In fact, 
there will be an infinite number of minuscule line segments. Yet, if you strung 
them all together, their length would be zero! 

If you have trouble believing the first part of the previous statement, 
suppose I placed you at the end of a room that was exactly 20 feet long. I 
then ask you to halve your current distance to the other side of the room, 
and to repeat this procedure. Your distance in feet from the opposite wall 
would then be: 

10 5 2.5 1.25 .625 ... 

However, would you ever reach the other wall? The answer is no! Although 
you can get arbitrarily close to the wall, you can never actually arrive at it 
using the procedure outlined. The effect is similar when you apply the Cantor 
procedure. You never completely annihilate the line5• 

You'll find the program CANTOR.PAS on your disk, which applies the Cantor 
procedure recursively to a line segment on the screen. The heart of the code 
for generating the Cantor set is a recursive procedure called Canto r. Let's 
look at the code in Cantor. 

1-10 
Co11structio11 of the 
Cantor set. 
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be gin 
line(xl, yl, x2, yl); 
yl : = yl + 16; {increment $y$-coo rdinate } 
if yl < = 128 then (don't do to fa r } 
begin 
delta : = (x2 - xl ) di v 3; (cal culate th ird of li ne segment} 
Cantor (x l, yl, xl + delta. yl ) ; {draw fir st third } 
Cantor(x 2 - delta, yl, x2, yl ) ; {draw third th i rd } 
end; 

end ; 

Suppose that the starting line segment has the left-end point coordinate 
( x 1 . y 1 ) . Then, if the line is level, it has the right-end point at ( x 2 . y 1 ) . The 
first line of the program invokes the graphics procedure l i n e, which draws a 
line between these points. 

You then calculate one-third of the distance between these points, which is 
done by the statement: 

delta : = (x2 - xl) div 3 

The d i v operator ensures that the result of the division will be an integer and 
not a floating point number, which Pascal will not allow here. 

You add 16 pixels to they-coordinate to move the next iteration down, and 
then perform procedure Canto r on the third of a line segment starting at 
point C x 1 . y 1 ) and ending at C x 1 + de l ta . y 1 ) . You do the same on the 
other third of the line segment, starting from the point at ( x 2 - de l ta . 
y 1 ) and ending at the point C x 2 . y 1 ) . 

The following code ensures that you don't perform recursion too far down the 
y-axis (no more than 128 pixels from the top). 

if yl < = 128 then 

That 's all there is to it. You should run the CANTOR program yourself and 
see that it works. 

Repeated application of different geometric rules can generate other fractals. 
Although recursive geometric rules can be performed by an IFS system, 
which is easier to code, finding the IFS codes that are equivalent to the 
recursive geometric procedure is often quite difficult. 

Suppose you were given a piece of tinfoil with a thickness of exactly zero. 
You could say that the foil has a Euclidian dimension of two; that is, it 's two­
dimensional (the Cartesian plane is two-dimensional). Suppose now that you 
took that piece of foil and crumpled it into a ball. Although the ball now exists 
in three-dimensional space, it's not quite three-dimensional because it really 
is not a solid (remember the foil has zero thickness) and can't be described 
precisely using Euclidian geometry. You would then say that the ball has a 
fractional or fractal dimension. 



As you might expect, fractal images also have a fractal dimension. Consider, 
for example, the Cantor set. Normally, a line (with thickness of zero) is said to 
have a dimension of one (it's one-dimensional). However, the Cantor set is 
not quite a line, but rather a collection of an infinite number of disconnected 
line segments. What, then, is the fractal dimension of the Cantor set? 

Consider next the Sierpinski triangle or Sierpinski carpet. Both appear to be 
two-dimensional, but because they aren't filled, their fractal dimension 
should be somewhat less than two. What, then, are their fractal dimensions? 

There are precise answers to these questions, which are far beyond the scope 
of this text and most undergraduate mathematics courses. However, using 
an approximate technique, you can get a feel for the fractal dimension of 
some of the images described in this text. To do this, however, I need to 
introduce the concept of logarithms and exponentials. 

First, recall the notation: 

(1.1) 

You multiply x by itself ytimes, where yis said to be the exponent!' and xis 
the base. You say this as "x raised to the power y." For example: 

Now suppose you're given xYthe number x, and you want to find the number 
y. To do this, you apply a special operation called the base x logarithm to 
xY (x>0). The result will be yand is denoted: 

(1.2) 

From the previous example, you can see that: 

logi64) = 3 

So, how do you use logarithms to find fractal dimension? It turns out that a 
good approximation of fractal dimension Dis: 

D = log10(number of pieces)/log10(magnification) 

That uses the logarithm. 

To describe the formula for Din words: 

To find the fractal dimension, count the number of self-similar pieces, 
take the logarithm to the base 10, and divide by the base 10 logarithm of 
the magnification, where the amount of magnification is the amount of 
"closeness" needed to get the original image back. 
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For example, consider a solid line. At magnification n, you divide the line into 
n equal or self-similar pieces of length 1/n. Thus, the solid line has fractal 
dimension: 

D = log10(n)llog10(n) = 1 

Now, look at the Cantor set. Since it was produced by removing the middle 
third from a line, a magnification by three yields two self-similar pieces. 
Using a calculator, you can then find the fractal dimension to be: 

D = log10(2)/log10(3) = 0.63 ... 

Next consider a square on a two-dimensional plane. At magnification n, the 
square is divided into n2 self-similar squares, so it has fractal dimension: 

D = log10(n2)/log10(n) = 2 

(To verify this, pick any number, n > 1, plug it into the preceding formula, and 
work it out on a calculator.) However, for the Sierpinski triangle, any 
magnification by two yields three self-similar pieces, so it has fractal 
dimension: 

D = log10(3)/log10(2) = 1.58 ... 

There's an intricate and often subtle relationship between fractals and chaos. 
One way of interpreting their relationship is to note that fractals are 
generated by detecting attractors and repellers. Thus, they represent, in a 
sense, a visual representation of chaotic behavior. You can create black-and­
white fractal images by plotting points on the real line or Cartesian plane 
(attractors (stable points) in one color, repellers (chaotic points) in another 
color). By keeping track of the "speed" at which attractors attract and 
repellers repel, and by plotting bands of these rates in different colors, you 
can generate elegant fractals in color. 

In addition, fractals are chaotic in that they're very sensitive to changes in 
initial conditions. For example, you'll see that if you change the function to 
be iterated even slightly, this results in a vastly different fractal image output. 
This sensitive dependence on initial conditions is a theme that unites 
unstable systems, fractals, and chaos. 

Another way to see the relationship between fractals and chaos is to study 
cellular automata, a special mathematical abstraction from dynamical 
systems. Cellular automata can be stable or chaotic, and many generate 
fractals. I discuss cellular automata in chapter 4. 



It would be impossible to trace the pedigree of fractals or chaos precisely. To 
begin, you would have to study dynamical systems, nonlinear mathematics, 
functional analysis, and so forth. Listing the names of those who have 
contributed, at least in part, to the theory of dynamical systems is like 
reading a "Who's Who of Mathematics." 

However, although the early threads of fractals and chaos theory are old, the 
science itself is very new. For example, shortly after World War I (1919) 
Gaston Julia began work on what would later be called attractive cycles of 
complex functions, but for the next fifty years most of his work lay dormant. 

Much of the work on dynamical systems and cellular automata can trace its 
heritage to the great mathematician (and leading figure in the development 
of the digital computer), John van Neumann in the 1940s and 1950s. Also, in 
the early 1960s Edward Lorenz studied chaotic phenomena in weather. 

However, it wasn't until Mandelbrot came along that natural and human­
made phenomena were associated with self-similarity in such a clear way. In 
the last thirty years since Mandelbrot's first publications, scientists in diverse 
fields have linked fractals and chaos to their work. Since the 1970s many 
scientists like Michael Barnsley have extended the work of Julia, Mandelbrot, 
Lorenz, and others. For a complete treatise on the history of chaos and 
fractals, see James Gleick's book (Gleick 1987). 

,4 brief histor!I 
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"From Nature's chain whatever link you strike, 
Tenth, or ten thousandth, breaks the chain alike." 

-Alexander Pope, Essay on Man (1733) 

In this chapter I introduce the mathematical background that's needed to 
generate some of the more breathtaking fractal images. Don't be intimidated 
if you've never seen this material before. Most of the mathematics involves 
simple variations on algebraic concepts covered in high school. If you aren't 
comfortable with the mathematics, simply skip the formulas now, and, if you 
like, come back to them later. However, the formulas do help unlock some of 
the mysterious beauty of the fractal images, and the formulas are worth the 
effort to master. Finally, all of the complex operations described here have 
been coded for you, and you can find them in the Pascal unit COMPLEX.PAS 
on the disk that comes with this book. Looking at the code might help you 
understand the mathematics. 

Consider the mapping signified by the symbol V, which is generally called 
the "principal square root." This mapping represents the inverse of the 
function f (x) = x2 defined on the real line. For positive numbers and 0, this is 
well defined. However, for negative numbers, it's undefined. For example, 
what is v'=5? What number multiplied by itself yields -5? 

Complex 
numbers 
& functions 

Joundations of chaos di fractal theory El 



Plotting 
complex numbers 

Arithmetic with 
complex numbers 

- Jractal )Vlania 

To get around this problem, mathematicians1 have defined the abstract 
notion of the square root of -1, denoted i. That is: 

You should realize that i is only the positive square root of -1, and that a 
negative square root, say k = -i exists as well, since: 

However, right now, you're only interested in the positive square root. 

Notice how i takes care of the square root of all negative numbers, since, for 
example: 

Y-4=~ = V4 • i = 2i 

Suppose now that you have a number, z of the following format: 

Z= a+ bi 

The z is called a complex number where a is called the real part and bis 
called the imaginary part. For example: 

4 + 5i, -3.12 + .Oli, 0 + 9i, 2.7 + Oi 

All of those are complex numbers. Complex variables (placeholders for 
complex numbers) are usually denoted with some variation of the letter z. For 
example, z1, z2, and so on. 

A complex number can be plotted as a point on the Cartesian plane by letting 
the real part represent the x-coordinate and the imaginary part represent the 
y-coordinate. For example, consider the complex numbers z1 = -1 + 2i, z2 = 
1.2 - 3i, z3 = -2.1 - .1i, and z4 = .5 + .5i. These are plotted on a Cartesian 
plane, except that the y axis is labeled as the "iy" axis, as shown in FIG. 2-1. 
This map is called the complex plane, and it's where complex numbers 
"live." Functions of complex numbers, which you'll see shortly, can also be 
plotted on the complex plane. 

Complex numbers can be added, subtracted, multiplied, and divided. 
Addition and subtraction are the easiest to perform-simply add or subtract 
the respective real and imaginary parts of the numbers. Officially, let z1 = a1 + 
b1i, and z2 = a2 + b2i be any complex numbers. Then for addition: 

For subtraction: 



Imaginary t = iy 

Real Z = X 

2-1 
The complex plane and 
some points on it. 

For example, let z1 = 4.1 + 3. li and z2 = -1 + . li, then: 

Z1 + Zz = 4.1 + (-1) + (3.1 + .l)i 

=3.1+3.2i 

and 

Z1 - Zz = 4.1 - (-1) + (3.1 - . l)i 

= 5.1 + 3.0i 

The following Pascal procedures, found in file COMPLEX.PAS, will perform 
addition and subtraction of two complex numbers. To find z3 = zl + z2 use: 

procedure ad d (x l, y l, x2 , y2 : real ; var x3 . y3 : real ) ; 
begin 

x3 = xl + x2 ; 
y3 : = yl + y2 

end ; 

For z3 = zl - z2 use: 

procedure sub(x l, yl, x2 , y2 re al; va r x3 , y3 r e al) ; 
begin 

x3 : = xl - x2 ; 
y3 := yl - y2 

end; 

In both procedures, the real and imaginary parts of z 1, z 2, and z 3 are x 1, 
y l, x2, and x3 , y 3 respectively. 
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Notice how the procedures accept the input of two complex numbers by the 
real and imaginary parts separately, and the procedures also output the 
complex sum of these numbers in terms of the real and imaginary parts. 

Multiplication and division of complex numbers is just a bit trickier. Let 's 
consider multiplication first. Let z1 = 81 + b1i and z2 = 82 + b2i, then by 
multiplication using the FOIL method (first, inner, outer, and last products) 
and simplifying: 

For example, let z1 = 4.1 + 3.1i and z2 = - 1 + .1i, then: 

Z1 • Zz=--4.41-2.69i 

The following Pascal code, found in COMPLEX.PAS, will perform 
multiplication of two complex numbers. The input and output to the 
procedure is in the same manner as for the addition and subtraction 
procedures. 

proced ure mult(xl, y l, x2 , y2 : real ; var x3 , y3: real); 
begin 

x3 := x l •x2 - yl•y2 ; 
y3 := y l•x2 + xl •y2 

end; 

The real and imaginary parts of z 1, z 2, and z 3 are x 1, y 1, x 2, y 2, and x 3, 
y 3 respectively. 

Next let's consider division. Let z1 = 81 + b1i and z2 = 82 + b2i, then: 

It 's not known how to do this division directly. To put the ratio in a form that 
you can handle, multiply numerator and denominator by 82 - bzi. This is like 
multiplying it by 1, which doesn't change the equality2. You then get: 

(81 + b1i) (82 - b2i) (8182 + b1b2) + (82b1 - 81b21i 

(8282 - b 2b 2) + (82b 2 - 82b 2)i 

(8182 + b1b2) + (82b1 - 81b2)i = ----------
8 2 + b 2 

2 2 

(8182 + b1b2) (82b1 - 81b 2) . 
= ----+----] 

8 2 + b 2 8 2 + b 2 
2 2 2 2 



Now you've expressed the ratio in terms of the real number division of the 
real and complex parts. 

For example, let z1 = 4.1 + 3.1i and z2 = -1 + .1i, then: 

~ = 3.79- 3.51i 
Zz (-1)2 + (1)2 

-3.79 3.51 . 
=-----] 

1.01 1.01 

= -3.752 - 3.475i 

The following Pascal code, found in file COMPLEX.PAS, will perform division 
Z1 

of two complex numbers where z3 = 2 2 . The input and output to the 

procedure is in the same manner as for the addition and subtraction 
procedures. 

procedure cdiv(xl, yl . x2, y2 : real; var x3, y3 : real) ; 
var 

denom 
begin 

denom 
x3 
y3 := 

end; 

real ; 

:= x2•x2 + y2•y2; 
(xl•x2 + yl•y2)/ denom ; 
(x2•y, - xl•y2)/ denom 

{ denominator } 

real part 
imaginary part 

Again, the real and imaginary parts of z 1, z 2, and z 3 are x 1, y 1, x 2, y 2, and 
x3, y3 respectively. 

In order to generate some really interesting-looking fractals, you need more 
than just addition, subtraction, multiplication, and division.3 You need more 
powerful functions of both real and complex numbers. 

The first of these more powerful functions are two simple functions of real 
variables: the hyperbolic sine and hyperbolic cosine, denoted cash and sinh 
respectively and defined as follows4: 

e' + e-x 
cosh(x) = 2 (2.1) 

e' - e-x 
sinh(x) = 2 (2.2) 

The two following Pascal procedures generate the hyperbolic cosine and sine 
respectively: 

function cos h ( x : real ) : real ; 
begin 

cosh : = (exp(x) + exp(-x))/2 . 0 
end; 

{ calculates cosh(x) } 

Junctions of 
complex 
variables 
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function si nh( x : real) : real; 
begin 

sin h : = (exp(x) - exp(-x))/2 . 0 
end ; 

{ calculates sinh(x) ) 

Using the hyperbolic cosine and sine, along with the cosine and sine function 
of real numbers, you can define the cosine and sine of a complex number z, 
denoted cos(z) and sin(z) respectively, as follows : 

cos(z) cos(x + iy) cos(x) cosh(y) - isin(x) sinh(y) 

s in (z) sin(x + iy) sin(x) cosh(y) - icos(x) sinh(y) 

(2.3) 

(2.4) 

Procedures for these operations in Pascal are found in COMPLEX.PAS and 
are shown in the following, where the returned values x 1 and y 1 are the real 
and imaginary parts of the answers respectively. For example, to compute 
the complex cosine: 

procedure ccos(x , y : real; 
begin 

xl 
yl 

end : 

cos(x)•cosh(y): 
- s in ( x) •sin h ( y l 

To compute the complex sine: 

var xl, yl : real); 

procedure csin(x, y : real; var xl, yl real); 
begin 
xl sin(x)•cosh(y) ; 
yl : cos(x)•sinh(y) 

end ; 

You need a way of finding the exponential of a complex number. First note 
that Euler's equation5 relates the exponential to the sine and cosine: 

eix = cos(x) + isin(x) (2.5) 

Then, to calculate the exponential of a complex number, use the equation: 

ez = ex+iy = e'. eiy = e•(cosy + isiny) 

The distributive laws for multiplication over addition yields: 

ex+iy = e'cosy + ie'siny 

A Pascal procedure to find this exponential, which is found in the 
COMPEX.PAS file, is: 

procedure cexp(x, y : real; 
begin 

xl 
yl 

end; 

exp(x)•cos(y); 
exp(x)•sin(y) 

var xl, yl: real); 

(2.6) 



The real part of the answer is returned as x 1, and y 1 is the imaginary part of 
the answer. 

Finally, it 's interesting to note that, from Euler's equation, it's possible to 
show that the sine and cosine functions of a real number can be defined 
solely in terms of exponentials, namely: 

e ix + e -lx 

cos(x) = 2 

and 

. e ix _ e -ix 

sm(x) = 2i 

For practice, you might want to try to prove this . 

(2.7) 

(2.8) 

In this section, you'll see some beautiful fractals that you can generate by 
finding the attracting (or escaping) points of iterated complex functions. It's a 
fascinating characteristic of chaotic systems that you can generate vastly 
different fractals by a slight alteration of the iterated complex function. 

The Julia set of a complex function f (z) is the boundary of the set of points 
that escape; points in the Julia set don 't themselves escape, but points 
arbitrarily close by do. You couldn't possibly determine these points without 
infinite computer power. Instead, you can find the points that themselves 
escape and assume that the points that don 't escape are arbitrarily close by. 

There are three basic techniques for finding Julia sets of complex functions . 
The first is by computing escaping orbits. The second is called the Inverse 
Iteration Method (IIM), and the third is called the Boundary Scanning Method 
(BSM). The two latter ones are superior to first , but the first is easier to code 
and understand, so I use it throughout the text. 

To find escaping orbits, you iterate the function f (z) at each point on a 
portion of the complex plane centered at (0, 0) . You iterate the function until 
either the point attracts or escapes (indifferent points are treated as 
escaping) . 

However, finding escaping and attracting points for complex valued 
functions is a little more difficult than for real valued functions . You can't test 
complex valued functions to see if they 're less than infinity (and greater than 
minus infinity) because they have an imaginary part. Instead, you need to 
find the modulus of the complex function at each iteration. 

3inding 
attractors of 
complex 
functions 
'Julia. sets 
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The modulus of a complex number z is equal to the square root of the sum of 
the squares of its real and imaginary parts (remember the Pythagorean 
theorem?). If z = a+ ib, then its modulus, denoted I z I is: 

For example, let z = 3 + 4i, then: 

lzl =-V32 +42 =V25=5 

(2.9) 

Now let's define attraction and repulsion of complex valued functions . A 
function f (z) iterated at the point z0 attracts if the square of its modulus 
(that's the sum of the squares of its real and complex parts) at any point in 
the iteration is less than some threshold, which is called the attractor 
sensitivity. The threshold is generally set to be much less than 1. In some 
cases, minor variations in the attractor sensitivity can result in wild variations 
in the image produced. 

If a function is iterated at a point, and after a certain number of iterations it 
has not attracted, or if its modulus exceeds some number, then the point has 
escaped. The number of times that a function is iterated before you decide 
that it has escaped depends on a couple of factors . First, if the modulus of the 
iterated function is less then the sensitivity, then the point attracts. If the 
modulus is less than 100, and the number of iterations is less than the 
maximum, continue iterating. Finally, if the modulus of the iterated function 
exceeds 100 or doesn't attract after the maximum allowed iterations, the 
point is considered as escaping6. The maximum number of iterations is 
actually controlled by the number of allowable colors your screen can display. 
Most EGA and VGA screens can display 16, and you can use twice this as 
the maximum number of iterations. If you have a screen capable of displaying 
256 colors or more, beware. Many of these programs will then take hours to 
run. You might want to change the variable Ma x Col or to 16 in this case by 
changing the line: 

MaxColor : = GetMaxColor; 

to: 

MaxColor := 16; 

If you have a very fast computer, however, and you want to leave the code 
unchanged, you'll be rewarded with images that are incredibly beautiful. 

You can start by running some of the programs and generating Julia sets for 
yourself. Begin by generating the Julia set for f (z)=cos(z) contained in 
program JULIAl.PAS. Run the program by typing JULIAl at the DOS prompt. 
The lovely output is shown in FIG. 2-2. Let's talk about how the program 
works. 



First, you'll notice two constants defined in the beginning of the program: 

zoom= 2.0; 
attract= 0.0001; 

{ create 4 by 4 window } 
{ attractor sensitivity l 

Described fully in appendix A, the first constant establishes a window of the 
complex plane to be displayed. In this example, both the real and imaginary 
axis of the complex plane will range from -2 to 2, giving a window of width 
and height of four units (see FIG. 2-3). The second parameter sets the attractor 
sensitivity. In this case, an iterated function is assumed to attract at a point if, 
after a suitable number of iterations (MaxCo lo r * 2), the square of the 
modulus of the number ( x*x + Y*Y) is less than 0.0001. 

You can play with the attractor sensitivity and zoom factor to obtain different 
effects. The program, however, does take a long time to run. To see why, 
consider an ordinary VGA screen with 640 x 480 pixels and 16 colors. Then: 

640 • 480 = 307200 

2-2 
']ulia set for f (z) = cos(z). 
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(-2,2) __________________ (2,2) 

1-------------(0,0)---------1 

(-2,-2} (2,-2} 

That's how many pixels are on the screen. Since there are 16 colors, you'll 
have to iterate at each point as many as 32 times. That's 307,200 pixels times 
32 iterations, which is 9,830,400 total iterations. Each iteration requires the 
calculation of a complex sine, which on many PCs takes about a thousandth 
of a second. The total calculation time is about 9,830 seconds or 2.73 hours!. 
The actual time is probably better; this analysis was a worst-case one and 
assumed that all points had to be iterated 32 times, whereas many will attract 
(or escape) before then. Furthermore, if you have a coprocessor, the code will 
be at least 50 percent faster. On the other hand, if you have a high-quality 
screen with many more pixels, the program might take many more hours to 
run. If this is the case, try using larger zoom factors or modifying the attractor 
sensitivity so that it's closer to unity. 

You can generate many other interesting Julia sets with only modest variation 
of the iterated function f (z). For example, F1G. 2-4 shows what's known as 
Duoady's rabbit. It's generated by finding the Julia set of the function: 

f (z) = z2 + -0.122 + 0.745i 

You can generate Duoady's rabbit by running the program RABBIT.PAS, and 
the "Siegel disk," shown in F1G. 2-5, is a Julia set generated by running the 
program SIEGEL.PAS. Examine the file to determine which complex function 
is being iterated in this program. 

Next, you can create the dragon-like image shown in FIG. 2-6 by finding the 
Julia set of: 

f (z) = z2 + 0.360284 + 0.100376i 
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You can generate this image by running the program DRAGON.PAS. 

Notice how just a slight change in the complex constant being added to the 
function z- dramatically changes the image. 

Finally, let's look at the Julia set off (z) = sin(z). Its image looks like Christmas 
ornaments and is shown in FIG. 2-7. The image was generated by the program 
JULIA2.PAS. Because many iterations of the complex sine are being 
evaluated, this image takes several hours to generate on most home 
computers. 

Incidentally, for fun you should try modifying program JULIAl.PAS to find the 
Julia sets of the following functions: 

1. f (z) = 1tie2 



2. I (z) = (1 + 0.1i)sinz 

3. f(z) = 2.965cosz 

Be sure to use the complex functions found in the Turbo Pascal unit 
COMPLEX.PAS. 

A different kind of fractal that can be generated by finding escaping and 
attracting points of a complex function is the Mandelbrot set. A Mandelbrot 
set is the set of complex constants q for which the orbits7 of the function 
f (z)={J(.z)+cj, evaluated at the initial condition of z0 = 0, do not escape. You 
might have noticed that the Mandelbrot set is somewhat similar to a Julia 
set, but it's not exactly a graph in the complex plane. Rather, it's a graph of 
the parameter space determined by the c j, where the real part of q is plotted 
on the x-axis , and the imaginary part is plotted on the y-axis. 

Normally, the Mandelbrot set is the set of points whose orbits do not escape 
for the function: 

f(z) = z2 + C; (2.11) 

In this case, g(_z) = z2 in equation 2.10. However, the "Mandelbrot set," which 
is named after its discoverer, Benoit Mandelbrot, can be found for other 
functions of z. 

2-7 
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To write a program that generates Mandelbrot sets, you only have to modify 
the JULIAl.PAS slightly. Whereas with Julia sets you sweep the value of z 
over some range, here you fix z = 0 and sweep the complex constant c. You 
then check for attracting points and color-escaping points in a similar 
manner. Let's look at the program that does this, MANDEL.PAS. 

In the program, you color the attracting points blue, but you don 't color the 
escaping points. The pertinent code is: 

begin 
while (i ter < 30) and (mag< escape) do 
begin 

mul t(x,y,x ,y , x ,y) ; 
ad d(x ,y , cx , cy , x,y) ; 
mag : = x•x+y•y ; 
it er = i ter + l; 

en d; 

squa re z } 
add c } 
ca l culate sq uare of modulus } 
i ncremen t counter } 

i f mag < esca pe t hen output blue for non-escapees} 
putpi xe l (i , j, BLUE) 

end whil e l oop } 

Notice how you test the square of the modulus, variable mag, to see if it's less 
than the escape threshold. If it is, then the point attracts , and you output a 
blue pixel at the point. Otherwise, you keep iterating the function up to 30 
times. The result, called the filled Mandelbrot set because it uses only one 
color, is shown in FIG. 2-8. 

.. 



If. however. you color the escaping points in terms of the number of iterations 
it takes them to escape, and you don't color the attracting points, as in 
program MANDEL2.PAS, then you get the beautiful and well-known image 
of FIG. 2-9, which is generally called "the Mandelbrot set." An important piece 
of code in MANDEL2.PAS looks like: 

while (iter < MaxColor • 2) and (mag< escape) do 
begin 

mult(x,y,x,y,x,y); 
add(x,y,cx.cy,x,y); 
mag : = x•x+y•y; 
iter = iter + 1: 

end; 
if mag> escape then 

begin 
putpixel(i,j, iter 
continue : = FALSE 

end 

square z l 
add c } 
calculate square of modulus l 
increment counter l 

color escaping points} 

div 2): 
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Notice how you output the pixel color in terms of the number of iterations. 
Also notice that you have a flag. cont i nu e. which is used to break out of the 
outer loop. You might want to examine program MANDEL2.PAS more closely 
to get a better feel for the algorithm. 

By making tiny adjustments to the initial conditions in the Mandelbrot and 
Julia sets, you can generate an amazing variety of different types of fractals . 
These dynamical systems are very sensitive to minor variations in initial 
conditions. the accuracy of the computer, and the number of iterations used 
to determine escape, and all of these can affect the appearance of the final 
image. For example, some of the images generated here. which you might 
have seen elsewhere, might differ slightly in levels of detail. Remember that 
the images in this book have been generated with a simple personal 
computer with ordinary graphics and not on a supercomputer with high­
resolution graphics. The details might be different, but the overall 
morphology or shape is the same. Finally, the choice of colors and their 
assignment is arbitrary. 

This book uses the method of finding escaping orbits to generate Julia and 
Mandelbrot sets. However, as a point of interest. I should briefly discuss the 
inverse iteration method (IIM) and boundary scanning method (BSM). 

The inverse iteration method essentially takes advantage of the fact that if 
f (z) = z2 + c = w. then the inverse8 of the function, denoted 1-1(z). is: 

1-l(z)=±~ 

The orbits are then found by iterating randomly on +J-1(z) and-J-1(z) . In other 
words, IIM takes advantage of symmetry to halve the number of calculations. 
However, on many computers the square root operation takes much longer 
than twice the square operation (so the savings might not always be there), 
but there can be significant savings in memory use if tables of values are 
stored. This can also speed execution. 

The boundary scanning method works by sliding a box or window across the 
region of the complex plane to be plotted. The points at the corners are then 
tested for attraction. If all four points attract to the same point, then the 
center of the box is an attractor; otherwise it repels. The technique is a three­
dimensional analogy of testing if a car on a roller coaster is at stable or 
unstable equilibrium. If it's stable, then the cuplike region formed is said to 
be a basin of attraction (see FIG. 2-10). BSM is truer to the definition of the 
Julia set, and so often generates crisper fractal images. However, it takes far 
more computations than a simple search for attracting points. 



You can generate fractals in three dimensions, but instead of plotting points 
on a plane, you need a cube or three-dimensional space. For this purpose, 
complex numbers aren't sufficient; instead, you need more sophisticated 
mathematical tools called quaternions. These are hyper-complex numbers or, 
in essence, a pair of complex numbers. 

A quaternion qis written as: 

q = ro + ix + jy + kz (2.12) 

The numbers i, j, and k are all the positive square root of -1. That is: 

Note that if y and z are equal to 0, qis just a complex number. In three­
dimensional fractals, if you set w = 0, the x, y and z terms are used to select 
the x, y and z coordinates of a pixel in three-dimensional space. 

The manipulation of quaternions is much more complicated than for complex 
numbers because quaternions and their associated operations form what's 
termed a noncommutative algebra. What this means is very simple. Whereas 
x. Y= Y•x for any two real or complex numbers, with quaternions this 
doesn't hold! 

2-10 
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For example, for quaternions, the following is true: 

However: 

J •i = -k 

In general, quaternions satisfy the multiplicative rules: 

i2=J2=k2 =-1 

i•J=-J•i=k 

J 0 k=-k 0 j =i 

k 0 i=-i 0 k=J 

Quaternions are used in the generation of three-dimensional fractals and in 
three-dimensional rotational kinematics (the study of motion). A further study 
of quaternions is beyond the scope of this book, but it 's interesting to note 
that three-dimensional fractals are likely to appear in many applications. 



ehaosck 
fractals 
in nature 

"And Chaos, ancestors of Nature, hold 
Eternal anarchy, amidst the noise" 

- John Milton, Paradise Lost 

This chapter looks at natural phenomena that are chaotic in nature and 
discusses how you can model natural phenomena in terms of fractals . You 
might be especially interested in writing programs that can simulate natural 
beauty. 

You can see the chaos of nature in the study of population dynamics, 
particularly in the relationship between predator and prey. Although the 
models used are necessarily simplistic, they provide significant insight into 
the interrelationship between animals in a small part of the food chain. 

For example, suppose an ecologist is studying the population of caribou on 
an island in Canada. The population is unstable because of crowding, 
disease, and lack of food. The ecologist proposes to introduce some wolves 
on the island to help stabilize the population. 

Let's model this system and see why it's highly unstable. Let caribou(t), 
wolf(t) be the number of caribou and wolves at time t, respectively, and let 
cariboub be the rate of birth of the caribou. If there were unlimited resources 
of food, space, and so on, then the excess of the birth rate over the death rate 

Population 
dynamics 
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for the caribou is positive. In the absence of predators, then the population of 
caribou grows at a rate of: 

growth(t) = cariboub • caribou(t) (3.1) 

The death rate from wolves depends on the number of encounters between 
wolves and caribou, K, and is assumed to be proportional to the number of 
caribou: 

death( t) = K • caribou( t) • wolf( t) 

Then the equation controlling the caribou population is: 

caribou(t+ 1) = caribou(t) + growth(t) - death(t) 

or 

caribou(t + 1) = caribou(t) + cariboub • caribou(t) - K • caribou(t) • wolf(t) 

(3.2) 

To simplify the model, assume that the death of each caribou results in the birth 
of one wolf. This is the only means by which the wolf population can grow. 
However, it's subject to a death rate of wolfd. Thus, the wolf population is: 

wolf(t + 1) = wolf(t) + K • caribou(t) • wolf(t) - wolfd • wolf(t) 

I've set up this simulation as a discrete simulation, which means that I've 
used a finite difference equation to model it1. I could have created a 
continuous simulation, but this would have involved a mathematical tool 
called a differential equation and very sophisticated software to solve the 
equation. 

(3.3) 

By correct selection of the predator and prey populations, the birth rates, and 
the death rates, the system should show stable oscillations of both species. 
Otherwise, the system will become unstable (chaotic), resulting in the 
extinction of the wolf or both populations. 

To illustrate, a Pascal program to calculate the caribou and wolf populations 
is given in the PREY.PAS file on your disk. You should run this program as 
you follow this discussion. You can also use a common spreadsheet 
application program such as Lotus 1-2-3 to generate graphs that give a visual 
representation of the population dynamics. Included on your disk is a Lotus 
version 3.0 file, WOLVES.WK3, which simulates the caribou-wolf system. You 
need to copy row 6 down to row 1000 to simulate 1000 months of activity. For 
discussion, I've included some of the graphs generated using Lotus 1-2-3. 

You'll find that our little predator-prey system is not very sensitive to the 
initial populations. However, it's extremely sensitive to the death rate to 
contact ratio K. 



For example, FIG. 3-1 depicts the populations over 1000 months with the 
following parameters: 

■ Initial population of caribou, caribou(0) = 10,000 
■ Initial population of wolves, wolf(0) = 1500 
■ Birth rate for caribou, cariboub = .01 
■ Death rate for wolves, wolfd = .05 
■ Death rate contact ratio K = .000006 
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Try running PREY.PAS with these values. Notice how this is a nicely stable 
system. When the caribou population gets too high, the wolf population 
increases shortly thereafter to keep it in check. When the caribou population 
drops, the wolf population falls soon after. 

However, if you change the parameter K, the death contact ratio , even 
slightly to K = .00001, you generate the population profile shown in FIG. 3-2. 
Try running PREY.PAS with these values. Notice how there are wild swings 
in both populations, and at times, the wolf population is dangerously close to 
extinction. 

Finally, when parameter K = .000014, the system is completely unstable, as 
depicted in FIG. 3-3. The initial population of caribou is quickly decimated, 
leading to the eventual drop in wolves. Both populations make a weak 
recovery, but when the caribou population drops, the wolves are eventually 
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the rnribou-wolf system 
with K = .000006. 

ehaos di fractals in nature Ill 



12 

10 aribou 

8 

en 

3-2 'O 
@ 

Population d0namics of en 6 
;'.j 

the caribou-wolf s0stem 0 
..c::: 

with K = .00001. E--< 

4 

2 
Wolves 

0 
0 100 200 300 400 500 600 700 800 900 

Time in Months 

60 

50 

40 

en 

3-3 
'O 
@ 30 

Population d0namics of en 
;'.j 

the caribou-wolf s0stem 0 
..c::: 

with K = .000014. 
E--< 

20 

10 
Caribou 

\ 
Wpv s 

0 
0 100 200 300 400 500 600 700 800 900 

Time in Months 

- Jractal }Vlania 



extinct. This leads to an explosion in caribou, which would probably drop 
dramatically due to lack of food, space, disease, and so on, although this is 
not captured by the model. Using the spreadsheet model, or program 
PREY.PAS, you should experiment with initial conditions, and the various 
parameters to determine which of them lead to instability. 

You can use fractals to generate images that resemble many types of 
animals. For example, you can see an infinite number of self-similar seals or 
dolphins frolicking in FIG. 3-4. I generated this image by running program 
SEAL.PAS with the IFS codes given in TABLE 3-1 . 

Table 3-1 
IFS transformation rule for seals. 

1 2 3 4 5 6 probability 
1 -0.5 0 0 0.5 0 0 0.25 
2 -0.5 0 0 0.5 2 0 0.25 
3 -0.4 0 1 0.4 0 1 0.25 
4 -0.5 0 0 0.5 2 1 0.25 

7"nimals 
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genera tee/ from the 
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It's no wonder that some genetic researchers theorize that the mutation of 
genes-previously thought to be random-is not, but rather chaotic with 
various strange attractors. Moreover, you can conjecture about the 
morphology of cells. Is the shape of a cell random or chaotic? Figure 3-5 shows 
an amoeba-like image generated from the filled Julia set of f(z) = z2 + .3 - 4i. 

"" 

Weather The weather is widely known to be a chaotic system. Storms and calm 
weather often appear without explanation. Embarrassed weather-people are 
constantly trying to decide where a certain prediction went awry. Edward 
Lorenz, one of the fathers of meteorology, and the first to recognize chaos in 
climatic systems, noted that in theory the flapping of a butterfly's wings in 
Tokyo might cause a storm over New York. 
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In this sense, measuring the weather can also affect it. Certainly the devices 
measuring wind speed have a more profound influence than the flapping of a 
butterfly's wings. This reminds me of the well-known principle in physics 
called Heisenberg Uncertainty. The principle states that an observer can't 
know precisely the position and velocity of a particle at the same instant. 
An interpretation of this is that in measuring the position or velocity of the 
particle, the measuring instrumentation changes one or both. Could this 
mean that, by measuring the forces that determine weather, you're doomed 
to affect it, thus rendering your predictions hopelessly inaccurate? 

In this section you'll see many beautiful computer-generated images, most of 
which were created by playing with the data in the transformation matrix of 
Barnsley's iterated function system algorithm. 

You can generate many beautiful trees, leaves, and flowers using both IFS and 
Julia set fractals. For example, one of the most commonly seen fractals is the 
black spleenworth fem leaf shown in FIG. 3-6. This was generated by iterating 
a well-known mapping rule, encoded in the program FERN.PAS, which you 
can run. Table 3-2 shows a matrix-encoded form of the mapping for the fem. 

Table 3-2 
IFS transformation rule for fem. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.16 0 0 O.D1 
2 0.85 0.04 -0.04 0.85 0 1.6 0.85 
3 0.2 0.26 0.23 0.22 0 1.6 0.07 
4 0.15 0.28 0.26 0.24 0 0.44 0.07 

By changing the parameters in the IFS matrix, you can generate a tree using 
code similar to the one used for the fem. In this case, the program is called 
TREE.PAS, and it uses the mapping rule described in TABLE 3-3. The output 
of the program is shown in FIG. 3-7. 

Table 3-3 
IFS transformation rule for tree. 

1 2 3 4 5 6 probability 
1 0 0 0 0.5 0 0 0.05 
2 0.42 -0.42 0.42 0.42 0 0.2 0.40 
3 0.42 0.42 -0.42 0.42 0 0.2 0.40 
4 0.1 0.0 0 0.1 0 0.2 0.15 

Scenes 
from nature 

'trees, leaves, dt 
flowers 
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By outputting many trees of different size, color, and position, you can create 
a forest. Program FOREST.PAS does just that, and its output is shown in FIG. 
3-8. When you run the program, trees start popping up all over the place, like 
some primeval forest. It really is quite a wonderful effect. 

The program is essentially the same as the other IFS programs except that 
the following code has been added: 

xpos : = random(MaxX); pick tree pos i tion 
ypos : = random(MaxX) ; 
scale : = random(3) + l; pick tree sca l e 
crand : = random(lO) + 1; pick tree co l or 
case crand of 

0,1,2,3,4 , 5,6 , 7 ,8 : 
color GREEN; most trees are green ) 

9 color YEL LOW; some t rees are yellow ) 

10 color BROWN; some trees die ) 

end ; 

The first two lines select a starting x and y-coordinate for the root of the tree 
between one-fourth and eleven-twelfths of the way from the edges of the 
screen. The scale of the tree is selected from between one and three, so that 
the largest trees are three times larger than the smallest, and some are in 
between. The fourth line selects a random number between one and ten, so 
that a color can be assigned. The program assumes that 80 percent of the 

3-7 
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trees are green, while 10 percent are dead (brown) and another 10 percent are 
yellow. With these criteria, the program then proceeds to generate 100 trees. 
You'll use this approach to generate other scenes. 

Another type of forest is illustrated in FIG. 3-9 and can be generated by 
running program REDMOSCL.PAS. Here you see a view of a redwood forest 
with a lush green floor and huge trees, whose tops are obscured by a mist. 
Again, the effect was achieved with iterated function systems. The floor of 
the forest is simply composed of trees again, while the redwoods and mist 
were generated with other IFSs with different parameters. 

Finally, I produced green seaweed using the program SEAWEED.PAS. Figure 
3-10 shows the output. Table 3-4 gives the IFS codes for the seaweed. 

Table 3-4 
IFS transformation rule for seaweed. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.5 0 0 0.25 
2 0.5 0 0 0.5 2 0 0.25 
3 0.4 0 1 0.4 0 1 0.25 
4 0.5 0 0 0.5 2 1 0.25 
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Using Julia sets, you can create beautiful flowers . For example, the program 
FLOWERl.PAS implements the Julia set of: 

f (z) = z- + 0.384 

This generates the lovely four-petaled rose shown in FIG. 3-11. 

You can generate a chrysanthemum by changing the constant term slightly 
to 0.2541. That is: 

f (z) = z- + 0.2541 

The program FLOWER2.PAS implements this, and the output is shown in 
FIG. 3-12. 



3-12 
Another four-petaled 
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You can exploit the billowy appearance of some fractals to generate cloudlike Clouds 
pictures. For example, FIG. 3-13 shows a threatening storm cloud generated 
by program CLOUD.PAS. The program finds the Julia set of: 

f (z) = z 2 - 0.194 + 0.6557i 

It suppresses all colors except white and yellow, which are mapped into the 
colors light gray and dark gray using the case statement: 

case iter div 2 of 
WHITE: putpixel(i,j, LightGray); 
YELLOW:putpixel Ci ,j. DarkGray) 

end: 

ehaos di fractals in nature El 



3-13 
Ii fractal storm cloud 

You can also use IFS systems to generate clouds that appear three­
dimensional. For example, the clouds shown in FIG. 3-14 were generated with 
the program CLOUDS2.PAS. The IFS codes for it are given in TABLE 3-5. 

Table 3-5 
IFS codes for three-dimensional fractal clouds. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.5 0 0 0.25 
2 0.5 0 0 0.5 2 0 0.25 
3 -0.4 0 1 0.4 0 1 0.25 
4 -0.5 0 0 0.5 2 1 0.25 

Rocks The generation of rocks and clouds can be handled similarly by changing 
colors. For example, try changing colors in program CLOUD.PAS by mapping 
white into brown, and yellow into red to generate a rock-like formation. 

- Jractal )Vlania 

Another way to generate a rock formation is with iterated function systems. 
For example, consider the IFS code table for program CLOUDS2.PAS. By 
changing the color to brown, you can generate the rocks shown in FIG. 3-15. 



3-14 
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Snowflakes Using fractal techniques, you can easily generate images that look like 
snowflakes. One type of snowflake, shown in FIG. 3-16, was generated from 
the Julia set of: 

3-16 
Snowflakes generated bl:J 

SNOW.PliS. 

- Jractal }Vlania 

f (z) = 2 2 + 0.11031 - 0.67037i 

This marvelous effect was achieved by running the program SNOW.PAS and 
coloring only the white pixels, with the code: 

i f ( it er di v 2 = WHI TE} 
put pixe l (i , j , WHITE ) ; 

Finally, you can generate a lovely snowfall, as shown in FIG. 3-17, by repeated 
random generation of the "cross fractal," much in the same way the forest 
was generated. Look at one of the snowflakes. It's just a square divided into 
nine equal parts with the four outer-middle boxes removed, as shown in FIG. 

3-18. The cross fractal is generated with the IFS codes shown in TABLE 3-6. 
Many of these little fractals are generated in different scales and positions to 
achieve the effect. You can produce the snowfall by running the FALL.PAS 
program. The resulting image appears to progress from a flurry to a blizzard. 
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Table 3-6 
IFS codes for cross fractal. 

2 3 4 5 6 
0 0 0.33 1 1 
0 0 0.33 MaxX 1 
0 0 0.33 1 MaxX 
0 0 0.33 MaxX MaxX 
0 0 0.33 MaxXdiv2 MaxXdiv 2 

. 
• 

X 
:,c 

II 
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• ... 

probability 
0.20 
0.20 
0.20 
0.20 
0.20 

3-18 
Cross /metal used to 
generate snowflakes. 

ehaos di fractals in nature Iii 



galaxies Slight modification of the FALL.PAS program yields what appears to be the 
view of some unknown region of space shown in FIG. 3-19. By changing the 
snowflake scaling factor so that it's very small, the flakes become stars. You 
can see this by running the GALAX1.PAS program. Finally, by looking again 
at FIG. 3-16, you can see that it resembles twin swirling galaxies. 

3-19 
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view of space. 

Coastlines Any one of the fractals generated using Julia sets (for example, FIGS. 3-13 and 
3-20) could represent the coastline of some mythical country viewed from 
above. Because the fractal is self-similar, it doesn't matter whether the 
viewer is one-thousand miles or one foot away. 

Jra.cta.ls in 
the human 

body 
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In addition, any section of these fractals has the property of infinite length. 
This might defy intuition, but if you tried to use a piece of string to trace the 
coastal outline, you'd run out of string. Perhaps the coast of England is 
infinitely long, as Mandelbrot has said! 

Many structures within the human body suggest a complex interrelation 
between biological development, form, and function. Scientists have 
wondered if underlying physical constraints lead, through scaling, to the 
ultimate form of plants and animals. For example, does the shape of a DNA 
molecule have a direct relationship to the shape of the organism it describes? 
Let's look at some instances where the human body might harbor fractals . 



Our lungs contain millions of air sacs called alveoli, which provide a 
mechanism for the exchange of gases. These are connected via increasingly 
larger bronchial tubes to the trachea in a structure shown in FIG. 3-21. That 
structure is very similar to the tree fractal previously shown in FIG. 3-7. 

As the bronchial tree branches out, its tubes decrease in size. From one 
branching to the next, the diameter decreases at about the same ratio until 
there's a change in the mechanism of flow, from minimum resistance near 
the beginning to molecular diffusion within the alveoli. This structure might 
also be similar to neural connections in the brain. 

3-20 
Dendrite structwe 
generated b11 
f(z)=t'-+i. 

ljronchial growth 

Some researchers have suggested modeling the wiring of the brain and }Veuron growth 
neuron growth using fractal bifurcation patterns (DeAngelis 1993). For 
example, the tree fractal has been cited as one mechanism for neuron wiring. 2 

In addition, neural activity tends to be fractal-like and chaotic-more so 
when the brain is involved in active problem solving (DeAngelis 1993). 
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With fractals, you can generate a structure that resembles dendrites, the 
main connectors between the neural processing elements of the brain. For 
example, look again at FIG. 3-20, which shows the filled Julia set generated by 
the function: 

f(z) = z2 + i 

Could the function f be the underlying mathematics behind the dendrite? 
Nobody knows. 

In addition to physical structure, physiological processes might be subject to 
the scaling properties that characterize fractals . Fractal processes within 
organisms can't be characterized by a single scale of time, but instead, have 
components at many frequencies. For example, some researchers have 
related the geometry of the nerves in the heart to the associated 
electrocardiogram3 output. Similar findings have been reported for the 
electrical activity of a neuron and variability in heart rate. Some scientists 
even speculate that diseases are caused by a disruption of the normal fractal 
scaling (West and Goldberger 1987). 

The image in FIG. 3-22 was generated by the program EKG.PAS using the 
Julia set for: 

f (x) = z2 - 1.5 

Could this be related to an actual EKG? 



Recent theories in psychology (DeAngelis 1993) conjecture that behavior 
might be determined by chaotic phenomena (some lay persons believe this 
already!). For example, viewing the mind as a complex dynamical system, 
psychologists contend that everyday, "normal" behavior represents attracting 
states. However, the chaotic and unstable nature of the mind often leads to 
drastic, random behavior shifts that, when harmless, are considered 
impulsiveness, but, when harmful, are considered dangerous psychosis. 
Some theorists believe that "crisis-prone" families aren't behaving randomly 
but simply according to a different norm. Practitioners believe that because 
the behavior patterns are highly chaotic, they can be changed from an 
abnormal pattern to a normal one with only a slight nudge. 

3-22 
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Simulated 
fractals & chaos 

Chaos umpire sits, 
And by decision more embroils the fray 
By which he reigns; next him high arbiter 
Chance governs all 

- John Milton, Paradise Lost 

In this chapter, you'll see how human-made systems can exhibit chaotic 
behavior, how this chaotic behavior can be harnessed, and how it can be 
harmful. You'll also see how fractal images can be used in modeling and 
predicting the performance of systems created by humans. 

Fluid flow (of liquids and air) is a major application area in dynamical 'turbulent flow 
systems. Anyone who has ever flown in an airplane is familiar with turbulent 
flow, or turbulence. Turbulence is characterized by disorder on all scales, 
with backward eddy currents and circular waves. In most systems, 
turbulence is undesirable because it creates drag and loss of energy through 
increased friction. Many human-made systems can exhibit chaotic turbulent 
flow, from the output of jet engines to the flow of oil through a pipeline. 
Automobile, airplane, and boat manufacturers use wind tunnels to design 
vehicle profiles that don't promote turbulence. 1 

You can readily find situations that exhibit turbulent behavior in everyday 
life. For example, boil a pot of water over a stove. As the water slowly boils, 
steam begins to escape from the surface. Next, the water slowly and 
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rhythmically begins to ripple until finally a turbulent, rolling boil is reached. 
This turbulence is chaotic and random-appearing, yet there's some 
semblance of regularity as well. It's almost as if some pattern wants to 
emerge. 

A second demonstration of turbulence, suggested by Moon (1992), also 
involves water. Take a dinner plate and place it under a tap. Fill the dish with 
water to overflowing, and continue to gently run the water. Place a ping­
pong ball in the dish and adjust the water until the ball bounces around 
merrily, performing chaotic oscillations. 

Structures The artist M. C. Escher was famous for his sketches and woodcuts that 
depicted impossibly beautiful buildings and other architectural marvels. The 
architect I. M. Pei was also noted for his impossible designs, with bizarre 
acute angles that defied conventional technique. Find a book on architecture 
to see the mathematical intuition that Pei possessed. Using fractals, and in 
particular IFS fractals, you can create "human-made" structures that appear 
to be functional as well as beautiful. 

4-1 
Castle. 

- ',ractal )Vl.ania 

For example, try running the program CASTLE.PAS, which is shown in FIG. 

4-1. It appears to be the walled ramparts of some medieval castle. The IFS 



codes for the program are shown in TABLE 4-1. The beautiful, mazelike 
structure shown in FIG. 4-2 can be generated by running the MAZE1.PAS 
program. Table 4-2 shows the IFS codes for this program. 

Table 4-1 
IFS codes for castle. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.5 0 0 0.25 
2 0.5 0 0 0.5 2 0 0.25 
3 0.4 0 0 0.4 0 1 0.25 
4 0.5 0 0 0.5 2 1 0.25 
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Table 4-2 
IFS codes for maze. 

1 2 3 4 5 6 probability 
1 0.33 0 0 0.33 1 1 0.166 
2 0.33 0 0 0.33 MaxYdiv 2 1 0.166 
3 0.33 0 0 0.33 1 MaxY div 2 0.166 
4 0.33 0 0 0.33 MaxYdiv 2 MaxY 0.166 
5 0.33 0 0 0.33 MaxY MaxY 0.166 
6 0.33 0 0 0.33 1 MaxY 0.166 

Scene analysis is the process of extracting specific features from a larger 
picture or scene. Many applications exist for scene analysis. For example, 
mobile robots typically use scene analysis to navigate over terrain. Also, 
target acquisition programs used in civilian and defense systems use scene 
analysis to locate a designated object inside an image. For example, medical 
diagnosis software uses feature analysis to locate specific cell configurations 
such as tumors or fractures . 

Fractal models are useful tools in certain types of three-dimensional scene 
analysis of two-dimensional images because fractals can model an object's 
surface roughness. Fractals are especially well suited for this because surface 
roughness is known to be scale invariant within the effective resolution of 
most imaging devices. Fractal models have been used to very accurately 
classify natural textures such as skin, rock, cloth, and grass. 

Image compression is the process of reducing the amount of stored 
information needed to reproduce an image. In fractal compression 
techniques, the bit-by-bit storage of the image is replaced by its 
representation by an iterated function that requires significantly less storage. 
The disadvantage, of course, is that it often requires significant time to 
regenerate the image from the iterated function rather than simply displaying 
the image pixel by pixel. 

The quality or level of compression is expressed in terms of a compression 
ratio. The compression ratio is the ratio of the bytes required to store an 
uncompressed image to those needed to store the compressed equivalent. 
Compression rates for fractal compression seem to be in the range of from 
20:1 to 60:1 , but with questionable quality. 

To illustrate the power of fractal compression, consider the forest that was 
shown in FIG. 3-8. If the computer screen that displays the image is 640 by 
480 pixels and requires 16 bits or two bytes per pixel, then the following 
equation shows the bytes of storage needed: 

640 X 480 X 2 = 614400 



Whereas the program used to generate the image required only the data 
contained in the IFS matrix. Assuming that each number in the matrix 
required four bytes and four additional four-byte numbers were needed for 
the probability that the transformation in a row was applied, then you only 
needed to store the following number of bytes: 

24 X 4 + 4 X 4 = 112 

Then the compression ratio for the forest image is: 

number of bytes for screen image 

number of bytes for IFS codes 

That's 614400/112, which is a compression ratio of 5485:1. This is an amazing 
savings in storage, which is due to the very low quality of the image 
rendered. A higher-quality image would necessitate a much lower 
compression ratio. However, if the image were to be transmitted by a satellite 
to the earth, you would realize an incredible savings in the time needed to 
transmit the image. 

According to Barnsley (1988), fractal compression is facilitated by a 
measure of deviation between a given image and its approximation by an 
iterated function system (IFS). The Collage Theorem (1988) essentially 
states that to find an IFS attractor that's close to the desired image, you 
have to find a set of mappings and transformations such that their union or 
collage is close to the desired image. Unfortunately, this process of finding 
the transformations is agonizingly slow, even on the most powerful 
supercomputers. 

One of the greatest problems with fractal compression of images is that it's 
difficult (if not impossible) to find a fractal that will generate a given image. 
At this writing, it's generally done by trial and error. There are certain fractals 
that look like trees, mountains, clouds, and so on. These can be tuned to 
imitate a picture that needs to be compressed. 

For example, FIG. 4-3 depicts a swamp pond near my home. This certainly 
appears to be fractal-like. By tinkering with various IFS parameters, I came 
up with the suggestive image shown in FIG. 4-4. 

To generate this image, I used the IFS codes given in TABLE 4-3. By 
generating this fractal in many positions, sizes, and colors, I made it similar to 
the forest image. The code for this is in SWAMP.PAS, and I encourage you to 
examine it to see that it's very close to FOREST.PAS. Is the computer­
generated image faithful to the original? I'll leave it to you to decide if it's 
close enough. 

Problems 
with fractal 
compression 
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Table 4-3 
IFS codes for one clump in a swamp. 

1 2 3 4 5 6 probability 
1 0.5 0 0 0.25 1 1 0.25 
2 0.25 0 0 0.7 50 1 0.25 
3 0.25 0 0 0.7 1 50 0.25 
4 0.5 0 0 0.25 50 50 0.25 

Apparently, scientist Michael Barnsley has developed an algorithm that can 
generate the IFS codes for any image (although there are probably 
restrictions). However, at this writing, his technique is proprietary. 

Another problem associated with the compression of images using fractals or 
otherwise is that the compression and decompression can take substantial 
time, and this penalty can sometimes be prohibitive. Consider, for example, 
the program JULIA1.PAS, which generates the image associated with the 
Julia set off (z) = cos(z) . (Refer to FIG. 2-2.) Remember how long it took to 
generate this picture? In some cases, it took much more than an hour. That 's 
the drawback of image compression. In many cases involving real-time 
image processing, for the human eye to perceive continuous motion the 
screen must be updated at 33.3 times per second; this time delay is wholly 
unacceptable. 

Mandelbrot was one of the first to recognize that scaling is an important 
feature of pricing in economics. He analyzed the price of cotton (based on 
Department of Agriculture figures) during the period from 1880 to 1958. An 
interesting pattern emerged. When Mandelbrot plotted a suitable function of 
the price of cotton during the period from 1900-1905, it resembled the same 
plot for the period from 1880-1940 and for the period from 1944-1958. In other 
words, he identified a self-similarity in price across scale. (See FIG. 4-5.) 

$ $ $ 

1880 1958 1944 1945 
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It 's still unknown if Mandelbrot discovered fundamental truth in pricing of 
commodities or if it was simply a coincidence. Certainly, if you could 
guarantee the fractal nature of the price of cotton with certainty, you could 
make a killing on the Chicago Mercantile Exchange! 

To see, however, that this might be possible, consider a simple economic 
system that features a single product, say widgets, with price P and a market 
of buyers and sellers. If the amount of widgets produced stayed fixed, then 
basic economic theory says the price should be a linear function of the 
demand, and thus would rise or fall by a factor of a. The price of widgets at 
time t would then be: 

P(t + 1) = aP(t) 

The price at any time t + 1 is just the price at the previous time times the 
factor a. 

Suppose that, in order not to appear greedy, the sellers decide to lower their 
price by the quantity aP(t)2. (The sellers know that what they lose in profit 
margin they make up in volume anyway.) The price, then, at time t + 1 is: 

P(t + 1) = aP(t) - aP(t) 2 (4.1) 

This equation is known as the logistics equation, and it was first proposed as 
a model for population growth by P. F. Verhulst in 1845. 

Let 's simulate the system by assuming that the starting price for the widget 
is 90 cents and sweeping the demand factor a from 2.5 to 4.0. You then 
iterate the price over time (the time scale could be days, months, years, or 
otherwise), skipping the first 50 iterations to allow the price to "stabilize." 
You then plot the price P(t) on the y-axis against the demand factor a on the 
x-axis. You can see this by running the PRICE.PAS program. Its output is 
shown in FIG. 4-6. Notice that the figure is similar to the bifurcation fractal 
shown in FIG. 1-4, just as PRICE.PAS is similar to BIFUR.PAS. 

Note that for any particular value of a (plotted on the x-axis) , there are many 
prices associated with it. The price is unstable. However, there are a few 
values for which the price seems to flip-flop between two numbers. These 
bands of stability are characterized by bald spots in the plot. 



One final note is that equation 4.1 is almost identical to equation 2.11 (used 
to generate the Mandelbrot set) except that the former involves real numbers 
instead of complex ones. It should be no wonder, then, that they both 
generate self-similar images. 

A type of mathematical abstraction, called cellular automata, has a profound 
relationship to both fractals and chaos. Cellular automata have been studied 
as a model for biological cell behavior and massively parallel computers. 

Cellular automata, which were originally investigated by John von Neumann 
and others, consist of a space of unit cells. These cells are initialized with 
some value, generally a "1" representing a "live" cell, and a "O" for a dead or 
unoccupied cell. Different characters can be displayed to represent these 
states, but the idea is that some rule describing the evolution of the system is 
defined. This rule describes the contents of a unit cell at time tin terms of the 
contents of the cell and its neighbors at time t - 1. 

An important feature of cellular automata is the ability to self-organize, or in 
the terms of chaos theory, find attractors. In addition, many types of cellular 
automata will eventually attract to stable, fractal-like formations. This 
attraction occurs with relative indifference to the initial state of the cell field . 

Steven Wolfram, a leading expert on cellular automata, has classified cellular 
automata in a way that helps to reveal their relationship to chaos. 

• Class I: evolution to a homogeneous state (an attractor) 
• Class II: evolution to isolated periodic segments 
• Class III: evolution that is always chaotic 
• Class IV: evolution to isolated chaotic segments 

You'll be seeing some cellular automata that fit each of these categories. As 
you read along, try to decide for yourself what stage of evolution the 
automata are in. 

In a one-dimensional cellular automaton, the cells are organized in rows, and 
a cell's contents at time tare based only on the contents of the cell and its 
neighbors on either side at time t - 1. In one-dimensional cellular automata, 
you trace the evolution of the system by observing the row at time t followed 
by the row at time t + 1, and so on. In many cases, the result is chaotic or 
unstable, but in some cases a strange attractor is found. 

For example, on your disk you'll find a program called CELL1.PAS, which is a 
Pascal implementation of a cellular automaton that follows the cell rule: 

a~ = (a_1 aoa1) + (8_1 a1) + (ao81) 

Let's see what this rule means. 

eellular 
automata 

One-dimensional 
cellular automata 

Simulated fractals de chaos m 



Iii Jractal }Vlania 

The symbol a~ represents the contents of a given cell at time t. Similarly, Bo is 
the contents of the cell at the previous time, t- 1. Finally, a_ 1 is the contents 
of the cell on the left at time t - 1, and a1 is the contents of the cell on the 
right at time t - 1. 

Multiplication represents the Boolean AND operation, which produces a one 
only if both operands are one2• The addition symbol, +, represents the 
Boolean OR operation, which produces a one if one or both operands are one. 
Finally, the bar over a cell's contents, for example a;;, indicates that its 
Boolean complement is to be taken, which is simply a one if the cell contains 
a zero, and vice versa. Thus, the cell rule says in words that 

A cell is alive if both its neighbors and it are alive, or if its left neighbor is 
dead and its right neighbor alive, or if it and its right neighbor are alive. 

Isn't the mathematical notation more compact? In fact , it can be simplified, 
by logical inference, to be: 

A cell is alive if its left neighbor is dead and its right neighbor alive, or if it 
and its right neighbor are alive. 

That statement has the following symbolic equivalent: 

a~= (a_1a1) + (aoa1) 

I didn't simplify the rule in CELL1.PAS, but you should, just for practice. 

When you run program CELL1.PAS, it will prompt you for the starting 
configuration of the cell system. You're then to enter a line of asterisks (" * ") 
corresponding to the live cells. Try entering a line of spaces followed by an 
asterisk in column 40 like this: 

* 
The program will prompt you for the number of iterations to run, that is , the 
number of time ticks for the system. Respond with 22. The output of the 
program should look like a Sierpinski triangle, as shown in FIG. 4-7. It's 
amazing that, like a seed crystal, a single cell site results in the strange 
attractor of the Sierpinski triangle. (If you had written the program so that 
single pixel activations represented cells, then you could see this even more 
dramatically. Try it as project!) 

You can have fun experimenting with function r u l e in program CELL 1. For 
example, try coding these rules: 

1. a~= (a_1Bo) + (a_1ifi) + (a_1a1) 

2. a~= (a_1Bo8i) + (a_1 ao) + (a_1a1) + (aoa1) 
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Then run the program and use the same input as before; that is, seed it with 
a single cell site. 

Some one-dimensional cellular automata, for instance the one you just saw, 
generate interesting fractal-like patterns based on an initial configuration 
using only one cell. These systems can be models of crystal growth in certain 
types of structures that are generated from a single seed crystal. However, 
other cellular automata take a random, multiple cell input and organize it to 
find attractors after many iterations. The organization can be in the form of a 
regular or fractal-like pattern, or it can result in some form of oscillating 
structure. 

Let's look at one rule that organizes a random initial cell configuration into a 
fractal-like state. Examine file CELL2.PAS. It's essentially the same program 
as CELLl.PAS, except with the evolution rule: 

Run it, giving it any random (nonempty) initial cell configuration, such as: 

*** * ** * **** * * *** *** * * *** * * *** ** ** *** ** ** ** 

Be sure to populate the input line with many live cells. Remember, this is 
supposed to be a random starting configuration; asterisks or live cells are just 
as likely to occur as dead or blank cells. 

Simulated fractals di chaos Iii 



The program will then prompt you for the number of iterations (generations) 
to run. Respond with at least 50 iterations and watch the dynamic results . 
The output will resemble FIG. 4-8 but will be constantly changing. Notice 
that, although it 's random, it appears to be organizing or at least oscillating 
through different configurations. Try running this automaton for several 
hundred iterations. 

Other rules that will organize a random initial configuration after a large 
number of iterations are: 

1. a~ = (a_1 ao a;) + (a_1 aoa1) 

2. a~= (a_1 aoa1) 

You can test these by modifying CELL1.PAS or CELL2.PAS. 

CCwo-dimensional A cellular automaton that's organized as a two-dimensional matrix or array of 
cellular automata cells is called a two-dimensional cellular automaton. Here, a cell's contents at 

time tis based on its own contents and the contents of all its immediate 
neighbors at time t - 1. One two-dimensional cellular automaton that has 
been studied extensively is the "Game of Life," developed by John Conway. 
In the Game of Life, the local rule states that a cell "dies" (gets a value of 
zero) unless two or three of its neighbors are alive (have a value of one) . If two 
neighbors are alive, then the value of the cell site is unchanged. If three 
neighbors are alive, the site always takes on the value one. 

- Jractal }Vl.ania 

Depending on the initial configuration, various static equilibrium states, such 
as squares or hexagons, have been found. Oscillating or periodic segments 
can exist, as can "traveling"or "glider gun" states where cell configuration 
moves across the cell field and can be regenerated indefinitely. 

The program LIFE.PAS on your disk is an implementation of the Game of Life. 
I have made the traditional assumption that if the number of live cells around 
a given cell is greater than 3, then the cell dies of overcrowding-. The program 
was not difficult to write, but would be tedious to describe. If you 're 
interested, I encourage you to look at the code and modify procedure r u l e to 
create an organism that behaves according to another rule. 

Run the program. It will ask you for a file containing the initial configuration 
of the cell system. File TEST on your disk contains a sample configuration 
file. To change initial configurations, modify this file using an ASCII-based 
editor3. When prompted, input a large number of iterations (say 1000) and 
watch the little universe evolve. 

A second implementation of Life is also on your disk. This program 
LIFE2.PAS generates a random starting configuration. The program requests 
the number of iterations to run. Be generous; several hundred is good. Once 
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input, the cell world will mutate and evolve. Look for stable configurations 
such as squares and circles, and bi-stable configurations called "blinkers," 
which alternate between two states. Other configurations of cells will appear 
to walk across the screen. Still others will split or join. It really is a fascinating 
program to watch. 



'furbo Pascal 
graphics 

For those of you who are interested in modifying or writing fractal programs 
using Turbo Pascal graphics, the following discussion is about the graphics 
screen of your computer. A typical color graphics screen is organized in an 
array of picture elements or pixels capable of displaying one or more colors. 
The quality (and cost) of your monitor is dependent upon, among many 
things, the density of the pixels (called the resolution) and the number of 
colors that each pixel is capable of displaying. 

For example, most low-cost enhanced graphics adapter (EGA) color monitors 
consist of a 640 x 480 array of pixels that can display in 16 different colors. 
The first number, 640, represents the number of columns of pixels, whereas 
480 is the number of rows. Low-cost video graphics adapter 0/GA) monitors 
have a similar configuration. 811per VGA monitors often have 1280 x 1024 
pixel arrays that can display in 256 colors. Higher-quality and more expensive 
monitors also exist. 

Regardless of the resolution and number of colors your monitor supports, the 
upper left-most pixel has coordinate (0,0), and the lower right-most pixel has 
coordinate (MaxX, MaxY) where MaxX is the number of pixel columns and 
Max Y is the number of rows. Since you're interested in mapping this screen 
into the complex plane so that coordinate (0,0) is at the center of the screen 
(see FIG. A-1), you need to devise an algorithm to do this. 

"Curbo Pascal graphics Ill 



A-1 
Mapping the screen 

coordinate Sijstem onto 
the complex plane. 

- 1'1.ppendix 1'I. 

(0,0)---11►~( zoom.zoom) 

(0,MaxY) 

(MaxX,0) 

(0,0) of 
complex 

plane 

(Max X,Max Y) ---i►► (zoom, -zoom) 

Suppose you want to map the screen with the upper left-hand coordinate 
(0,0) and the lower right-hand coordinate (MaxX, MaxY) onto a square section 
of the complex plane. The plane has the center coordinate (0,0), the upper 
left-hand comer coordinate (-zoom, zoom), and the lower right-hand comer 
coordinate (zoom, - zoom), were zoom is some arbitrary constant. To do this, 
use the transformation for the x-coordinate: 

2 • zoom f (x) = x--- - zoom 
MaxX 

The transformation for the y-coordinate is: 

2 • zoom 
g(y) = -y MaxY + zoom 

Can you see that these transformations map the point (0,0) into the point 
(f(0), g(O)) = (-zoom.zoom) and the point (MaxX, MaxY) into the point 
(f(MaxX), g(MaxY)) = (zoom,-zoom) as desired? 

(Al) 

(A.2) 

Since on most screens Max X and Max Y are unequal, stretching a picture along 
these directions in these proportions would result in distortion (in technical 
jargon, the aspect ration would have changed). To prevent distortion, then, you 
pull in both directions equally, generally choosing Max X as the zoom factor 
because it's larger than Ma x Y. This will result in a loss of information on the 
right-hand side of the screen (an important behavior known as clipping). 



Stretching in both directions by Ma x Y will prevent clipping but will result in an 
image that doesn't completely fill out the horizontal space. 

The code supplied with this book is designed to run on any EGA er VGA type 
monitor. (Some other monitors, such as those with the older, CGA technology 
might also work.) The code takes into account Ma xX and Ma xY and the 
number of colors that can be displayed by these monitors. 

Let 's look at a piece of code that appears in virtually all of the programs and 
is used to set up the Turbo Graphics environment. The first line in almost 
every program that uses graphics has the code: 

uses 
Crt , Com pl ex ,Grap h; 

This is a Pascal statement that declares that the units C rt, Comp l ex, and 
Graph are going to be used. Unit C rt is a standard Turbo Pascal unit that 
provides nongraphics screen utilities such as Cl r Sc r , which clears the 
screen. Unit Comple x is a unit that I wrote. It contains the complex function 
routines you need to generate Julia and Mandelbrot sets. Unit Gra ph is a 
standard Turbo Graphics unit that provides the routines to display graphics. 

The next code is common to all graphics routines and contains the variable 
declarations that are needed to call the Gr a p h unit and to do the overall 
scaling. These variables are: 

Grap hDriver 
GraphMode 
Er rorCode 
MaxY 
zoom 
scale 
x,y 
MaxColor 

: integer: 
integer: 
integer : 
integer : 
real : 
real : 
real ; 
integer ; 

Sto res grap hics dr i ver num ber} 
Stores graphics mode for driver } 
Reports any error condition} 
Maximum Y screen coordina t e} 
overall zoom factor } 
scale factor } 
i ntermediate variables 
maximum number of colors on gra ph ics card } 

I've included the comments associated with these variables, as they are self­
descriptive. 

The next important phase in using graphics is to detect the type of monitor 
that the code is going to run on. To this effect, you'll see the code: 

Grap hDriver : = Detect; (try to detec t graphics card} 
Ini t Graph(GraphDriver , Grap hMode ," l : (init i alize gra phi cs} 
ErrorCode : = Grap hResul t: 
if ErrorCode <> grOk the n {check for error} 
beg i n 

Wri t el n( ' Grap hics error : '. Grap hErro rM sg(Er rorCodel l : 
Writeln( ' Graphics card not found ' ) ; 
Wri tel n( ' Prog r am aborted' l : 
Halt(l) 

end : 

(Jraphicsin 
the programs 

'turbo Pascal graphics Bl 
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The first line detects the type of graphics driver (for example, EGA or VGA) 
and stores it in variable Gr a p h Dr i v e r . The second line initializes the 
graphics mode so that it's compatible with the graphics driver. The next 
seven lines take care of any errors during graphics initialization. If there's a 
problem, such as no graphics capability, the program will immediately halt. 
This indicates that either your monitor doesn't have graphics capability or it's 
damaged in some way. In this case, refer to your computer owner 's manual. 

Later in the code, you'll find: 

MaxColo r : = Ge tM axColor; f ind max i mum num ber of colors } 
MaxY : = GetMaxY ; fi nd max i mum Y screen coordina t e 
scale: = 2.0*zoom/MaxX; calcula t e zoom fac t or} 

The first line reads the number of colors that your system is capable of 
displaying. Remember that this will also be used as the iteration limit for 
calculating Julia and Mandelbrot sets. 

The second line senses the maximum y-coordinate. Since, in general, the y­
coordinate is always less than the x-coordinate, you use they-coordinate as 
both the maximum x- and y-coordinate to be displayed. While this chops the 
screen off to the right, it prevents distortion of the images. See the previous 
discussion on aspect ratio for more details. 

The last line is the scale factor needed to perform the calculations in 
equations A.1} and A.2. The scale factor s ca l e is used in conjunction with 
variable zo om, which is a user input, to complete the coordinate 
transformation. That is: 

x : = scale*i - zoo m; 
y : = zoom - sca l e*j ; 

That will implement equations A.1 and A.2. 

The final statement that appears in the programs using graphics is: 

putpixel(i , j , color) ; 

That statement activates the pixel at row i and column j, with color given 
by the variable col o r. The variable col or will either be a 1 (which is 
generally dark blue) if a filled image was chosen, or will be based on the 
number of iterations before escape (variable i t e r) if an unfilled image was 
selected by the user. 



program amoeba; 

Program 
listings 

I compute and display an "amoeba" from the Julia set of 

f(z) = zA2 + .3 - .4i 
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uses 

Complex, Graph; 

const 
zoom= 2.0; 
attract= 0.0001; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i ' j 
MaxY 
scale 
mag 
iter 
continue 
x,y 
MaxColor 

begin 

: integer; 
integer; 
integer; 
integer; 
integer; 
real ; 
real ; 
integer; 
boolean; 
real ; 
integer; 

include graphics and complex routines) 

create 4 by 4 window) 
attractor sensitivity l 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum Y screen coordinate) 
scale factor J 
square of magnitude of complex number } 
escape iteration counter } 
continue iteration counter J 
real and complex parts of z } 
maximum number of colors on graphics card J 

Program listings El 



( initialize graphics l 

GraphDriver : = Detect; (try to detect grap hics card} 
lnitGraph(GraphDriver,GraphMode,"); (initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then (check for error} 
begin 

Writeln('Graphics error:', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Wri tel n( 'Program aborted ' ); 
Halt(l l 

end; 
MaxColor 
MaxY : 

GetMaxColor; 
GetMaxY; 

scale:= 2.0*zoom/MaxY; 

find maximum number of colors } 
find maximum Y screen coordinate 
calculate zoom factor} 

for i : 0 to MaxY do MaxY is usually smaller than MaxX } 
begin 

for j = 0 to MaxY do 
begin 

x : = seal e•i - zoom; 
y : = zoom - scale•j; 
continue : = TRUE; 
iter : = 0; 
while continue= TRUE do 
begin 

mult(x,y,x,y,x,y); 
add(x,y,0.3,-0.4,x,y); 
mag : = x•x + y•y; 
if mag< attract then 

continue : = FALSE 
else 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

square z } 
add 0.3 - 0.4i 
calculate square of magnitude 

point is an attractor l 

if (mag< 100) AND (iter < MaxColor•2) then ( keep iterating function } 
iter = iter + 1 

else 
begin 

putpixel(i,j, iter 
continue : = FALSE 

end 
end while loop} 

end {j loop} 
end{ i loop} 

end. 

program bifur; 

point escapes, plot it 

div 2); 
{ get out of loop I 

( compute and display bifurcation diagram for 

12 - 21 - 93 Phil Laplante 
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uses 
Crt,Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i • j 
MaxX 
MaxY 
X 

C 

MaxColor 
scale 
sf 

begin 

ClrScr: 

: integer; 
integer: 
integer; 
integer: 
integer: 
integer: 
real : 
real : 
integer: 
real : 
real : 

{ include CRT and graphics routines} 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum X screen coordinate) 
Maximum Y screen coordinate) 
iterated value ) 
constant of iteration 
maximum number of colors on graphics card l 
plotting scale factor l 
user input scale factor l 

( get user input scale factor J 

write(' input scale factor (1 - 10) '); 
readln(sf): 

( initialize graphics l 

GraphDriver := Detect; (try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,": {initialize graphics} 
ErrorCode := GraphResult; 
if ErrorCode <> gr0k then (check for error) 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Writeln( 'Program aborted'): 
Halt(l) 

end; 
MaxColor := GetMaxColor: 
MaxX GetMaxX: 
MaxY := GetMaxY: 

scale := sf•MaxX/8; 

C := - 2.0; 
for i := 1 to MaxX do 

begin 
X := 0 .0; 
c := c + 2.25/MaxX; 
for j := 1 to 200 do 
begin 

X : = X*X + C; 

find maximum number of colors l 
find maximum X screen coordinate 
find maximum Y screen coordinate 

calculate overall scale factor l 

set starting point l 

calculate orbit about x=0 
iterate c l 
calculate orbit after 200 iterations} 

if j> 50 then { skip first 50 iterations l 
begin 

putpixel(i,round(MaxY/2 + x•scale), j div MaxColor): 
end 

Program listings m 



end 
end 

end. 

program Cantor_set; 
{ Produce Cantor set using recursion 
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uses 
Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
MaxX 

: integer ; 
integer; 
integer; 
integer; 

{include graphics package) 

(Stores graphics driver number) 
(Stores graphics mode for driver) 
{Reports any error condition} 
{Maximum X coordinate ) 

procedure Cantor(xl, yl, x2, y2 : integer); 
{ Applies middle third algorithm to segment of real line ) 
var 

delta : integer; 
begin 

end; 

line(xl, yl, x2, yl); 
yl :=yl+l6; 
if yl <=128 then 
begin 

delta := (x2 - xl) div 3; 
Cantor(xl, yl, xl + delta, yl); 
Cantor(x2 - delta, yl, x2, yl); 

end; 

begin 
GraphDriver : = Detect; 
InitGraph(GraphDriver,GraphMode,""); 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then 
begin 

{one third of line segment J 

{increment y coordinate} 
{don't do to far ) 

{calculate quarter of line segment l 
{draw first third} 
{draw third third} 

{try to detect graphics card) 
{initialize graphics) 

{check for error} 

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode ) ); 
Writeln('Graphics card not found'); 
Wri tel n( 'Program aborted ' ); 
Halt( 1) 

end; 

MaxX := GetMaxX; 

Cantor(0,8,MaxX,8); 
end. 

Ell ;tlppendix lj 

{ start Cantor set at row 8} 
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'lhe Mandelbrot set. 

Castle. 



Ii filled Mandelbrot set. 

'Che ']ulia set of sin (z). 
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Dendrite structure generated 
bij f (z) = Z2 +i 

;our-petaled flower from the 
'Julia set of f(z) = z 2 + 0.384. 



f3ifurrntion diagram for f (x) = x2 + c with x = 0 and various values of c produced using t3FJIARPAS. 

f3ifurrntion diagram for a model economic s0stem. 



program carpet: 
( compute and display Sierpinski carpet 

using Michael Barnsley's IFS algorithm 
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uses 

Graph: 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 
i 
k 
MaxY 

Phil Laplante 

{include graphics package) 

: integer: Stores graphics driver number) 
integer: Stores graphics mode for driver) 
integer: Reports any error condition) 
real: pixel coordinates l 
integer: loop counters) 
integer: row selector l 
integer: maximum X and Y coordinates) 

d array[l. .8,1. .6] of real: ( holds data of IFS attractor l 

begin 
GraphDriver : = Detect: (try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,"J: (initialize graphics) 
ErrorCode : = GraphResult: 
if ErrorCode <> gr0k then {check for error) 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)): 
Writeln('Graphics card not found'): 
Writeln('Program aborted'): 
Halt(l) 

end: 
MaxY : = GetMaxY: ( get screen limits l 

initialize IFS data array ) 

d[l. 1]: =0.33; d[l.2]: =0; d[l,3]: =0: d[l ,4]: =0.33; d[l. 5]: 
d[2,l]: =0.33: d[2,2]: =0: d[2,3J: =0: d[2,4J: =0.33; d[2,5]: 
d[3,1J: =0.33; d[3,2J: =0; d[3,3J: =0: d[3,4J: =0.33; d[3,5J: 
d[4,1J: =0.33; d[4,2J: =0; d[4,3J: =0; d[4,4J: =0.33; d[4,5]: 
d[5,l]: =0.33; d[5,2J: =0; d[5,3J: =0: d[5,4J: =0.33: d[5,5J: 
d[6,1J: =0.33: d[6,2J: =0: d[6,3J: =0: d[6,4]: =0.33: d[6,5J: 
d[7,1J: =0.33: d[7.2J: =0: d[7,3]: =0: d[7,4]: =0.33: d[7,5J: 
d[8,l]: =0.33: d[B,2]: =0: d[B,3]: =0: d[8,4J: =0.33: d[8,5]: 

MaxY : = GetMaxY; 

randomize: (initialize random number generator) 

X 

y 
0; 
0: 

(set starting coordinates) 

for i 1 to 30000 do 
begin 

k : = random(8) + 1: ( pick random row l 

=l: d[l. 6]: =l; 
=MaxY; d[2,6J: =l; 
=l; d[3,6J: =MaxY; 
=MaxY; d[4.6]: =MaxY; 
=MaxY div 2; d[5.6J: =l; 
=MaxY; d[6,6J: =MaxY div 2: 
=l: d[7,6J: =MaxY div 2; 
=MaxY div 2: d[8,6J: =MaxY: 
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x : = d[k.l]•x + d[k,2J•y + d[k,5]; transform coordinates } 
y : = d[k,3J•x + d[k,4J•y + d[k,6] ; 
if i > 10 then skip first 10 iterations 

putpixel(round(2•x/3),round(2•y/3),WHITE) 
end 

end. 

program castle: 
{ compute and display "castle" fractal 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 
uses 

Graph; 

Phil Laplante 

{include graphics package} 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

: integer; Stores graphics driver number} 

k 
MaxY 
d 

begin 

integer; Stores graphics mode for driver} 
integer; Reports any error condition) 
real: pixel coordinates J 

integer; loop counters) 
integer; row selector J 
integer; Maximum Y screen coordinate) 
array[l. .4.1 .. 6] of real; I holds data of IFS attractor J 

GraphDriver := Detect; {try to detect graphics card) 
InitGraph(GraphDriver.GraphMode,""); {initialize graphics) 
ErrorCode := GraphResult; 
if ErrorCode <> gr0k then (check for error) 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found ' ); 
Writeln( 'Program aborted'); 
Halt( 1) 

end; 

MaxY := GetMaxY; 

initialize IFS data array 

d [ 1. 1 J : =0 . 5 ; 
d[2,l]:=0.5; 
d[3,1J:=0.4; 
d[4,1J:=0 . 5; 

d [ 1. 2 J: =0: 
d[2,2J:=0; 
d[3,2J:=0; 
d[4,2J:=0; 

d [ 1, 3 J: =0; 
d[2,3]:=0; 
d[3,3J:=0; 
d[4.3]:=0; 

d [ 1. 4 J : =0 . 5 ; 
d[2,4J:=0 . 5; 
d[3,4]:=0.4; 
d[4,4J:=0.5; 

d[l,5]:=0; d[l,6]:=0; 
d[2,5]:=2; d[2,6]:=0; 
d[3,5J :=0; d[3.6J:=l; 
d[4,5]:=2; d[4,6]:=l; 

randomize; {initialize random number generator) 

X := 0; (set starting coordinates) 

1111 AppendixrJ 



y := 0; 

for i := 1 to 32000 do 
begin 

k random(4) + 1: 
x := d[k,l]•x + d[k,2]•y + d[k,5]; 
y := d[k,3]•x + d[k,4J•y + d[k,6]; 

pick random number from 1-4) 
transform coordinates } 

if > 10 then skip first 10 iterations 
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),YELLOW) 

end { scale for screen } 
end. 

program celll; 
{ Simulate One - dimensional cellular automata 

1/29/93 Phil Laplante } 

uses 
Crt; 

canst 
columns 
rows 
cell 

type 

80; 
24; 
I* I ; 

{ unit for CRT driver } 

number of columns on screen 
number of rows on screen } 
eel l symbol } 

eel l field array[l .. columns] of boolean; { "playing field" } 

var 
cells 
initcell 

procedure init; 

cell_fiel d: 
string; 

playing field for experiment 
input cell configuration } 

{ initializes the cell configuration space (the "playing field") } 
var 

i , j 
begin 

integer; 

for j : = 1 to columns do 
cells[jJ : = FALSE; { initialize cell space l 

end; 

{ -------------------------------------------------------------

procedure display; 
{ displays line of cells to screen l 
var 

i ,j : integer; 

begin 
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begin 

end 
end; 

for j: = 1 to columns do 
if cells[j] = TRUE then 

write(cell) 
else 

write(' '); 

cell in space l 

no cell in space 

{ -- ---- ----------------------------------------------------------

procedure load; 
{ load initial cell file into array of cells l 
var 

i,j: integer: 

begin 

end; 

ClrScr: clear screen - l 
writeln( 'Input initial cell configuration '); 
readln(initcell); 
i nit; initialize cell space l 
for j : = 1 to length(initcell) do 

if initcell[j] cell then 
cell s[j J : = TRUE { live cell in space l 

{ -------------- --------------------------------------------------

procedure rule; 
{ apply one dimensional cellular automata rule for one iteration. 

note that the first and last cells in a row are omitted 

var 
oldcells : cell_field; 
i ,j : integer; 
aml,aO,al : boolean; 

holds copy of old cell field l 

left, current and right cells l 
begin 

end; 

for j : = 1 to columns do 
oldcells[jJ : = cells[j]; remember old cell configuration l 

init; initialize next configuration 

for j : = 2 to columns - 1 do omit boundary cells l 
begin 

aml oldcells[j - l]; 
aO oldcells[jJ: 
al oldcells[j + l]; 
cells[j] : = (aml AND NOT aO AND NOT al) OR (NOT aml AND al) OR (aO AND al) 

end 

{ -- - --------------- - ------ begin program----- - - - ----- - ---------- } 

- Appendix lj 



var 
i : integer; 
iter : integer; { number of iterations for simulation) 

begin 

end. 

load; 
display; 
write('Enter number of iterations for simulation '); 
readl n ( iter); 
write( 'Press Enter to Begin Simulation '); 
readln; 
ClrScr; 
display; 
for i : = 1 to i ter do 
begin 

rule; 
display 

end 

clear screen ) 
display starting configuration) 

apply rule to cell field 
display updated universe 

program cell2; 
{ Simulate a self-organizing one-dimensional cellular automata 

1/29/93 Phil Laplante ) 

uses 
Crt; 

canst 
columns 
rows 
cell 

type 
cell field 

var 
cells 
initcell 

80; 
24; 
I* I ; 

{ unit for CRT driver ) 

number of columns on screen 
number of rows on screen ) 
eel l symbol ) 

array[l .. columns] of boolean; { "playing field" ) 

cell_field; 
string; 

playing field for experiment 
input cell configuration ) 

{-------------------------------------------------- ----- ---------

procedure init; 
{ initializes the cell configuration space (the "playing field") ) 
var 

i 'j 
begin 

end; 

integer; 

for j : = 1 to columns do 
cells[j] : = FALSE; { initialize cell space) 

Program listings -



{ ---- ---------- ---- ----------------------------------------------

procedure display; 
{ displays line of cells to screen } 
var 

i,j: integer; 

begin 
begin 

for j : = 1 to columns do 
if cells[j] = TRUE then 

write(cel l l 
else 

write(' '); 
end 

end; 

cell in space } 

no cell in space 

{ ----------------------------------------------------------------

procedure load; 
{ load initial cell file into array of cells } 
var 

i ,j : integer; 

begin 
ClrScr; clear screen 
writeln('Input initial cell configuration '); 
readln(initcell); 
i nit; initialize cell space } 
for j : = 1 to length( i nitcell l do 

if initcell[j] cell then 
cells[j] : = TRUE { live cell in space l 

end; 

{ ----------------------------------------------------------------

procedure rule; 
{ apply one dimensional cellular automata rule for one iteration. 

note that the first and last cells in a row are omitted 

var 
oldcells : cell_field; 
i , j : integer; 
aml,aO,al : boolean; 

begin 
for j : = 1 to columns do 

oldcells[jJ : = cells[jJ ; 

i nit; 

for j 2 to columns - 1 do 
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holds copy of old cell field l 

left, current and right cells } 

remember old cell configuration 

initialize next configuraion 

omit boundary cells l 



begin 
aml oldcells[j - l]; 
aO oldcells[j] ; 
al oldcells[j + l]; 
ce l ls[j] : = (aml AND NOT aO and NOT al) OR (NOT aml AND al) 

end 
end; 

{ ------------------- - --- - - begin program -- --------------------- - - l 

var 
i : integer; 
i ter : integer; 

begin 
load; 
display; 

{ number of iterations for simulation) 

write('Enter number of iterations for simulation ' ); 
readln(iter); 
write('Press Enter to Begin Simulation '); 
readln; 

end. 

ClrScr; 
display; 
for i : = 1 to i ter do 
begin 

rule; 
display 

end 

program cloud; 

clear screen l 
display starting configuration) 

apply rule to cell field 
display updated universe 

{ compute and display Julia set of function 
f(z) = zA2 - 0.194 + 0.6557i 

1 - 2 - 92 Phil Laplante 
uses 

Complex. Graph; 

canst 
zoom=l.5; 
attract=0.0001; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i • j 
MaxY 
scale 
mag 

: integer; 
integer; 
integer; 
integer; 
integer; 
real ; 
real ; 

{ include graphics and complex routines) 

create 3 by 3 window l 
attractor sensitivity l 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum Y screen coordinate} 
scale factor l 
square of magnitude of complex number l 
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iter 
continue 
x,y 
MaxColor 

begin 

integer: 
boolean: 
real : 
integer: 

escape iteration counter l 
continue iteration counter l 
real and complex parts of z l 
maximum number of colors on graphics card l 

{ initialize graphics l 

GraphDriver : = Detect: {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode, ''): {initialize graphics) 
ErrorCode : = GraphResult: 
if ErrorCode <> grOk then {check for error) 
begin 

end: 

Writeln('Graphics error: ·• GraphErrorMsg(ErrorCode)): 
Writeln( 'Graphics card not found'); 
Writel n( 'Program aborted·): 
Halt(!) 

MaxColor GetMaxColor: find maximum number of colors l 
find maximum Y screen coordinate 
calculate zoom factor) 

MaxY : GetMaxY: 
scale: = 2.0•zoom/MaxY: 

for i : 0 to MaxY do MaxY is usually smaller than MaxY l 
begin 

for j = 0 to MaxY do 
begin 

x : = scale•i - zoom: 
y: = zoom - scale•j; 
continue : = TRUE: 
iter : =0: 
while continue= TRUE do 
begin 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

mult(x,y,x,y,x,y); { square z l 
add(x,y,-0.194,0.6557,x,y); add constant 
mag : = x•x + y•y; 
if mag< attract then 

continue : = FALSE 
else 

{ calculate square of magnitude 

point is an attractor l 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function l 
iter = iter + 1 

else point escapes, plot it l 
begin 

case iter div 2 of 
WHITE: putpixel(i,j, LightGray); 
YELLOW: put pixel ( i , j, Da rkGray) 

end: 
continue : = FALSE 

end 
end while loop) 

( get out of loop l 

end {j loop) 
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end{ loop} 
end. 

program clouds2; 
{ compute and display clouds 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 Frank D'Erasmo } 
uses 

Graph; {include graphics package} 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

: integer; 
integer; 
integer; 
real ; 
integer; 
integer; 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
pixel coordinates } 
loop counters} 

k row selector } 
MaxY integer; Maximum Y screen coordinate} 
d array[l .. 4,1. .6] of real; { holds data of IFS attractor l 

begin 
GraphDriver: = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found') ; 
Wri tel n( 'Program aborted'); 
Halt(l) 

end; 

MaxY : = GetMaxY; 

initialize IFS data array 

d[l. l]: 
d[2,l]: 
d[3,1J: 
d[4,1]: 

randomize; 

X 

y 
0; 
0; 

for i 
begin 

k 
X : 

0.5; d[l.2]: = O; d[l,3]: = O; d[l,4]: = 0.5; d[l,5]: = O; d[l,6]: = O; 
0.5; d[2,2]: = O; d[2,3]: = O; d[2,4]: = 0.5; d[2,5]: = 2; d[2,6]: = 0; 
-0 .4; d[3,2]: = O; d[3,3]: = l; d[3,4J: = 0.4; d[3,5J: 0; d[3,6]: l; 
-0.5; d[4,2J: = 0; d[4,3]: = O; d[4,4]: = 0.5; d[4,5]: = 2; d[4,6]: = 1; 

{initialize random number generator} 

{set starting coordinates} 

1 to 32000 do 

random(4) + 1; 
d[k,l]•x + d[k,2J•y + d[k,5]; 

{ pick random number from 1-4) 
{ transform coordinates l 
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y : = d[k,3J•x + d[k,4J•y + d[k,6]; 
if i > 10 then I skip first 10 iterations 

putpixel(round(MaxY•x/2).MaxY - round(MaxY•y/2),WHITEl 
end; { scale for screen } 

end. 
unit complex; 

interface 
procedure add ( xl. yl, x2. y2 real ; var x3. y3 
procedure sub ( xl, yl, x2. y2 real ; var x3, y3 
procedure mult(xl, yl. x2. y2 real ; var x3, y3 
procedure cdiv(xl, yl, x2. y2 real; var x3. y3 
function cosh(x : real l : real ; 
function sinh(x : real) : real ; 
procedure csin(x,y real ; var xl. yl : real l; 
procedure ccos(x,y real ; var xl. yl : real); 
procedure cexp(x,y real ; var xl, yl : real l; 

implementation 

procedure add (xl. yl, x2. y2 : real; var x3, y3 
{ calculates z3 = zl + z2 where: 

zl xl + iyl; 
z2 x2 + iy2; 
z3 x3 + iy3; 

begin 
x3 xl + x2; 
y3 yl + y2 

end; 

procedure sub (xl. yl, x2. y2 : real; var x3. y3 
I calculates z3 = zl- z2 where: 

zl xl + iyl 
z2 x2 + iy2 
z3 x3 + iy3 

begin 
x3 xl - x2; 
y3 := yl - y2 

end; 

procedure mult(xl. yl, x2. y2 : real; var x3. y3 
I calculates z3 = zl • z2 where: 

zl xl+iyl 
z2 x2 + iy2 
z3 x3 + iy3 

begin 
x3 xl•x2 - yl•y2; 
y3 := yl•x2 + xl•y2 

- AppendixrJ 

real); complex addition 
real l; complex subtraction 
real); complex multiplication 

: real l; { complex division 
{ hyperbolic cosine 
{ hyperbolic sine 
{ complex sine 
{ complex cosine 
{ complex exponentiation 

real l; 

real l; 

real); 

} 

} 

} 

} 



end; 

procedure cdiv(xl, yl, x2, y2 : real; var x3, y3 
{ calculates z3 = zl / z2 where: 

zl xl+iyl 
z2 x2 + iy2 
z3 x3 + iy3 

var 
denom real ; 

= x2•x2 + y2•y2; 
begin 

denom 
x3 (xl•x2 + yl•y2)/ denom; 

: = (x2•yl- xl•y2)/ denom y3 
end; 

{ denominator } 

real part 
imaginary part 

real l; 

function cosh( x : real l : real; { calculates cosh(x) l 
begin 

cosh : = (exp(xl + exp(-xl)/2.0 
end; 

function sinh( x : real) : real; { calculates sinh(xl } 
begin 

sinh : = (exp(x) - exp(-x))/2.0 
end; 

procedure ccos(x, y : real; var xl, yl 
calculates z = cos(x + iy) where: 
xl is real part of z 
yl is imaginary part of z 

begin 
xl 
yl 

end; 

cos(x)•cosh(y); 
- sin ( x l •sin h ( y l 

procedure csin(x, y : real; var xl, yl 
calculates z = sin(x + iy) where: 
xl is real part of z 
yl is imaginary part of z 

begin 
xl 
yl 

end; 

sin(xl•cosh(y); 
cos(x)•sinh(y) 

procedure cexp(x, y : real; var xl, yl 
calculates z = eA(x + iyl where 
xl is real part of z 
yl is imaginary part of z 

begin 
xl : exp(x)•cos(y); 

real); 

real ) ; 

real l; 
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yl : = exp(x)•sin(y) 
end: 
end. {unit complex} 

program dendrite; 
{ compute and display Julia set of function 

f(z) = z"2 + i 

1 - 2 - 92 Phil Laplante 
uses 

Complex. Graph; { include graphics and complex routines} 

canst 

var 

zoom=2.0: 
attract=0.0001 : 

GraphDriver : integer: 
GraphMode integer: 
ErrorCode integer: 
i . j integer; 
MaxY integer: 
scale real ; 
mag real : 
iter integer; 
continue boolean; 
x,y real : 
MaxColor integer; 

create 4 by 4 window} 
attractor sensitivity } 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 
square of magnitude of complex number l 
escape iteration counter l 
continue iteration counter l 
real and complex parts of z } 
maximum number of colors on graphics card l 

begin 

{ initialize graphics } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' ' ); {initialize graphics} 
ErrorCode : = GraphResult: 
if ErrorCode <> grOk then {check for error} 
begin 

Writeln( ' Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln( ' Graphics card not found'); 
Wri tel n ( ' Program aborted'): 
Halt(l) 

end; 
MaxColor GetMaxColor; 
MaxY : GetMaxY: 
scale: = 2.0•zoom/MaxY: 

for i : = 0 to MaxY do 
begin 

El Appendix lj 

find maximum number of colors } 
find maximum Y screen coordinate 
calculate zoom factor} 

MaxY is usually smaller than MaxY l 



for j : = 0 to MaxY do 
begin 

x : = scale•i - zoom; 
y: = zoom - scale•j; 
continue : = TRUE; 
iter : =0; 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

while continue= TRUE do 
begin 

square z ) 
add 0 + i l 

mult(x,y,x,y,x,y); 
add(x ,y,0.0,1.0,x,y); 
mag : = X*X + Y*Y; calculate square of magnitude 
if mag< attract then 

continue : = FALSE 
else 

point is an attractor ) 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function ) 
iter = iter + 1 

else point escapes. plot it 
begin 

putpixel(i ,j, iter div 2); 
continue : = FALSE { get out of loop l 

end 
end while loop) 

end {j loop) 
end{ i loop) 

end. 

program dragon; 
{ compute and display a "dragon" from the Julia set of 

f(z) = zA2 + 0.360284 + 0. 100376i 
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uses 
Complex, Graph; 

const 
zoom=2.0; 
attract=0.0001; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i. j 
MaxY 
scale 
mag 
iter 
continue 

: integer; 
integer; 
integer; 
integer; 
integer; 
real ; 
real ; 
integer; 
boolean; 

{ include graphics and complex routines) 

create 4 by 4 window l 
attractor sensitivity l 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition) 
loop variables} 
Maximum Y screen coordinate} 
scale factor l 
square of magnitude of complex number I 
escape iteration counter I 
continue iteration counter I 
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X, y 
MaxColor 

real ; 
integer; 

real and complex parts of z 
maximum number of colors on graphics card } 

{ initialize graphics 

begin 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 

end; 

Writeln('Graphics error: ·. GraphErrorMsg(ErrorCodell; 
Writeln('Graphics card not found'): 
Wri tel n( 'Program aborted' l; 
Halt(l) 

MaxColor GetMaxColor; find maximum number of colors } 
find maximum Y screen coordinate 
calculate zoom factor} 

MaxY : GetMaxY; 
scale: = 2.0•zoom/MaxY; 

for i : 0 to MaxY do MaxY is usually smaller than MaxX } 
begin 

for j = 0 to MaxY do 
begin 

x : = seal e•i - zoom: 
y : = zoom - scale•j; 
continue : = TRUE: 
iter : =0: 
while continue= TRUE do 
begin 

set starting value of real(zl 
set starting value of imag(zl 
assume point does not escape 

mult(x,y,x,y,x,y); { square z } 
add(x,y,0.360284,0.100376,x,y); { add constant l 
mag : = x•x + y•y; { calculate square of magnitude 
if mag< attract then 

continue : = FALSE point is an attractor } 
else 

if (mag< 100) AND (iter < MaxColor•2) then ( keep iterating function } 
iter = iter + 1 

else point escapes, plot it } 
begin 

putpixel(i,j, iter div 2); 
continue : = FALSE { get out of loop } 

end 
end while loop} 

end (j loop} 
end( i loop} 

end. 
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program EKG; 
{ compute and display a simulated "EKG" from the Julia set of 

12 - 21 - 92 Phi 1 Laplante 
uses 

Complex, Graph; 

const 
zoom= 2.0; 
attract= 0.0001; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i • j 
MaxY 
scale 
mag 
iter 
continue 
x,y 
MaxColor 

begin 

: integer; 
integer; 
integer; 
integer; 
integer; 
rea 1 ; 
rea 1 ; 
integer; 
boolean; 
rea 1 ; 
integer; 

{ initialize graphics l 

include graphics and complex routines) 

create 4 by 4 window) 
attractor sensitivity l 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum Y screen coordinate} 
scale factor ) 
square of magnitude of complex number ) 
escape iteration counter l 
continue iteration counter ) 
real and complex parts of z J 
maximum number of colors on graphics card } 

GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Wri tel n( ' Graphics card not found'); 
Wri tel n( 'Program aborted'); 
Halt( 1) 

end; 
MaxColor 
MaxY : 

GetMaxColor; 
GetMaxY; 

scale: = 2 . 0•zoom/MaxY; 

find maximum number of colors } 
find maximum X screen coordinate 
calculate zoom factor) 

for i : 
begin 

for j 
begin 

0 to MaxY do MaxY is usually smaller than MaxX ) 

= 0 to MaxY do 

x : = scale•i - zoom ; 
y: = zoom - scale•j; 
continue : = TRUE; 
iter : =0; 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 
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while continue= TRUE do 
begin 

mult(x,y,x,y,x,y); 
x: =x - 1.5; 
mag : = X*X + Y*Y; 

if mag< attract then 
continue : = FALSE 

else 

{ square z } 
{add- 1.5} 
{ calculate square of magnitude 

point is an attractor } 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function } 
iter = iter + 1 

else point escapes. plot it l 
begin 

if iter div 2 = MAGENTA then 
putpixel(i,j, WHITE); 

continue : = FALSE { get out of loop } 
end 

end while loop} 
end {j loop} 

end{ i loop} 
end. 

program fa 11; 
{ compute and display cross fractal 

using Michael Barnsley's IFS algorithm . Then generate 
snow fall by generating many of them. 

12 - 5 - 93 
uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

i ' j 
k 
MaxX 
d 
scale 
xpos,ypos 

begin 

Phi 1 Laplante 

{include graphics package} 

: integer; Stores graphics driver number} 
integer; Stores graphics mode for driver} 
integer; Reports any error condition} 
rea 1; pixel coordinates } 
integer; loop counters} 
integer; row selector } 
integer; maximum X screen coordinate} 
array[l. .5 , 1. .6] of real; { holds data of IFS attractor } 
real; { random scale factor} 
integer; { tree position } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,"); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writel n( ' Grap hi cs card not found'); 
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end; 

Writel n( 'Program aborted' l; 
Halt( 1) 

MaxX : = GetMaxX; { get screen limits ) 

initialize IFS data array ) 

d[l.lJ: =0.33; d[l,2]: =0; d[l , 3]: =0; d[l ,4]: =0.33; d[l. 5]: =1; d[l.6]: =l; 
d[2,1J: =0.33; d[2.2J: =0; d[2,3J: =0; d[2,4J: =0.33; d[2,5]: =MaxX; d[2,6J: =1; 
d[3,1J: =0.33; d[3,2]: =0; d[3,3J: =0; d[3,4]: =0.33; d[3,5J: =1; d[3,6J: =MaxX; 
d[4,1J: =0.33; d[4,2J: =0; d[4,3J: =0; d[4,4J: =0.33; d[4,5J: =MaxX; 
d[5,l]: =0.33; d[5,2J: =0; d[5,3]: =0; d[5 ,4J: =0.33; d[5,5J: =MaxX div 

MaxX : = GetMaxX; 

randomize; 

X 

y 

for j 
begin 

0; 
0; 

: = 1 to 150 do 

{initialize random number generator) 

{set starting coordinates) 

make snow flakes l 

xpos : = random(MaxX); pick flake position 
ypos 
scale 

for i 
begin 

: = random(MaxX); 
(random(5 ) + 

1 to 800 do 

k = random(5) + 1; 

1)/250; 

x : = d[k,l]•x + d[k,2]•y + d[k,5]; 
y : = d[k,3J•x + d[k,4J•y + d[k,6]; 

pick flake scale ) 

pick random row ) 
transform coordinates 

if i > 10 then skip first 10 iterations 
putpixel(round(scale•x + xpos),round(scale•y + ypos),WHITE) 

end . 

end 
end 

program fern; 
{ compute and display fern 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 Phil Laplante 
uses 

Graph; {include graphics package) 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

: integer; 
integer; 
integer; 
real ; 

Stores graphics driver number} 
Stores graphics mode for driver) 
Reports any error condition) 
pixel coordinates I 

d[4,6J: =MaxX; 
2; d[5,6J: =MaxX div 2; 

Program listings El 



integer; loop counter) 
q integer; random number 
k integer; row selector ) 
MaxY integer: Maximum Y screen coordinate) 
d array[l. .4,1. .6] of real: { holds data of IFS attractor ) 

begin 
GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,' '): {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error) 
begin 

end: 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln( 'Graphics card not found'); 
Wri tel n( 'Program aborted'); 
Halt(l) 

MaxY : = GetMaxY; 

initialize IFS data array l 

d[l,lJ: 
d[2,1J: 
d[3,1J: 
d[4,1J: 

O; d[l,2]: = O; d[l,3]: = 0; d[l,4]: =0.16; d[l,5]: = O; d[l,6] : = O; 
0.85; d[2,2]: = 0.04; d[2,3]: = -0.04; d[2,4]: = 0.85; d[2,5]: = O; d[2,6]: =1 .6; 
0.2; d[3,2J: = -0.26; d[3,3J: = 0.23; d[3,4]: = 0.22; d[3,5]: = O; d[3,6J: = 1.6; 
-0.15; d[4,2J: = 0.28; d[4,3]: = 0.26; d[4,4J: = 0.24; d[4,5J: = O; d[4,6]: = 0.44; 

randomize; {initialize random number generator) 

X 

y 
0; 
0; 

{set starting coordinates) 

for i 1 to 30000 do 

end. 

begin 
q : = random(lOO) + 1; 
if q < = 85 then 

k : = 2; 
if q = 86 then 

k : = 1; 
if (q > 86) AND (q < 94) then 

k : = 3; 
if (q > = 94) then 

k : = 4; 

pick random number from 1-100) 
assign row according to ) 
probabi 1 ity ) 

x : = d[k,l]•x + d[k,2J•y + d[k,5]; transform coordinates ) 
y : = d[k,3J•x + d[k,4J•y + d[k,6]; 
if i > 10 then skip first 10 iterations 

putpixel(round(MaxY/2 + MaxY•x/10),round(MaxY•y/10),GREEN) 
end { scale for screen ) 
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Program fib; 

finds the nth fi bo.r,acci number 
11 - 24 - 92 Phil Laplante 

function fibo(i:integer) : integer; 
{ a recursive function ) 
begin 

if i = 0 then 
fibo : = 0 

else 
if i = 1 then 

fibo = 1 
else 

fibo fibo(i - 1l + fibo(i - 2) 
end; 

var 
n integer; { nth number in sequence ) 

begin 
write( 'Enter n > 0 and less than 24 -> '); 
readln(n); 
writeln('f(',n,') = ',fibo(n)) 

end. 

program flowerl; 
{ compute and display a "rose" from the Julia set of 

12 - 21 - 92 Phil Laplante 
uses 

Complex, Graph; 

const 
zoom= 2.0; 
attract= 0. 0001; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i • j 
MaxY 
scale 
mag 
iter 
continue 
x,y 

: integer; 
integer; 
integer; 
integer; 
integer; 
real ; 
real ; 
integer; 
boolean; 
real ; 

include graphics and complex routines) 

create 4 by 4 window) 
attractor sensitivity ) 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum Y screen coordinate) 
scale factor ) 
square of magnitude of complex number ) 
escape iteration counter ) 
continue iteration counter ) 
real and complex parts of z } 
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MaxColor integer; maximum number of colors on graphics card l 

begin 

{ initialize graphics l 

GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode, ' '); {initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error) 
begin 

end; 

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode)); 
Writeln( 'Graphics card not found'); 
Writeln('Program aborted'); 
Halt(l) 

MaxColor GetMaxColor; find maximum number of colors l 
find maximum X screen coordinate 
calculate zoom factor} 

MaxY : GetMaxY; 
scale: = 2.0•zoom/MaxY; 

for i : 
begin 

0 to MaxY do MaxY is usually smaller than MaxX l 

for j 
begin 

= 0 to MaxY do 

x : = scale•i - zoom; 
y : = zoom - scale•j; 
continue : = TRUE; 
iter : =0; 
while continue= TRUE do 
begin 

mult(x,y,x,y,x,y); 
x: =x + 0.384; 
mag : = x•x + y•y; 
if mag< attract then 

continue : = FALSE 
else 

{ set starting value of real(z) l 
{ set starting value of imag(z) l 
{ assume point does not escape l 

{ square z l 
{ add 0.384 l 
{ calculate square of magnitude 

point is an attractor l 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function l 
iter = iter + 1 

else point escapes, plot it l 
begin 

putpixel(i,j, iter div 2); 
continue : = FALSE { get out of loop l 

end 
end while loop} 

end {j loop) 
end{ i loop} 

end. 

program flower2; 
{ compute and display a "chrysanthemum" from the Julia set of 

Ill Appendix rJ 



f(z) = zA2 + .2541 

12 - 21 - 92 Phil Laplante 
uses 

Complex, Graph; include graphics and complex routines} 

canst 

var 

zoom= 2.0; 
attract= 0.0001; 

GraphDriver : integer; 
GraphMode integer; 
ErrorCode integer; 
i' j integer; 
MaxY integer; 
scale real ; 
mag real ; 
iter integer: 
continue boolean; 
x,y real : 
MaxColor integer; 

create 4 by 4 window l 
attractor sensitivity } 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 
square of magnitude of complex number l 
escape iteration counter } 
continue iteration counter } 
real and complex parts of z } 
maximum number of colors on graphics card l 

begin 

{ initialize graphics } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver , GraphMode, ' ' ) : {initialize graphics} 
ErrorCode : = GraphResult: 
if ErrorCode <> gr0k then {check for error} 
begin 

Writeln('Graphics error: ' , GraphErrorMsg(ErrorCode)); 
Writeln( ' Graph i cs card not found'): 
Wri tel n( 'Program aborted'); 
Halt(l) 

end; 
MaxColor 
MaxY : 
scale: 

for i : 
begin 

for j 
begin 

GetMaxColor; 
GetMaxY: 
2.0•zoom/MaxY: 

find maximum number of colors l 
find maximum X screen coordinate 
calculate zoom factor} 

0 to MaxY do MaxY is usually smaller than MaxX } 

= 0 to MaxY do 

x : = scale•i - zoom; 
y : = zoom - scale•j; 
continue : = TRUE: 
iter : = 0: 
while continue= TRUE do 
begin 

mult(x ,y,x,y,x,y); 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

square z } 
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X: = X + 0.2541; 
mag : = x•x + y•y; 
if mag< attract then 

continue : = FALSE 
else 

{add 0.2541) 
{ calculate square of magnitude 

point is an attractor } 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function } 
iter = iter + 1 

else point escapes, plot it l 
begin 

putpixelCi ,j. iter div 2); 
continue : = FALSE { get out of loop l 

end 
end while loop} 

end {j loop} 
end{ i loop} 

end. 

program forest; 
{ compute and display forest of trees 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 
uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 
i • j 

q 
k 
MaxX 
d 
scale 
xpos,ypos 
crand 
color 

begin 

Phil Laplante 

{include graphics package} 

: integer; Stores graphics driver number} 
integer; Stores graphics mode for driver} 
integer; Reports any error condition} 
real; pixel coordinates l 
integer; loop counters} 
integer; random number l 
integer; row selector l 
integer; Maximum X screen coordinate} 
array[l. .4,1. .6] of real; { holds data of IFS attractor } 
real; { random seal e factor l 
integer; { tree position l 
integer; { pick random color (green, blue, yellow) } 
integer; { random color value } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode. • '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error} 
begin 

Writeln('Graphics error: •. GraphErrorMsg(ErrorCode)); 
Writeln( 'Graphics card not found'); 
Wri tel n( 'Program aborted•); 
Halt(l) 
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end: 

MaxX : = GetMaxX: 

initialize IFS data array } 

d[l,l]: 
d[2,1J: 
d[3,l]: 
d[4,l]: 

0; d[l, 2]: 0; d[l,3]: 0; d[l,4]: 0. 5: d[l, 5]: = O; 
0.42; d[2,2]: - 0.42: d[2,3J: 0.42; d[2,4J: 0.42: d[2,5J: 
0.42: d[3,2J: 0.42; d[3,3J: - 0.42; d[3,4J: 0.42; d[3,5J: 
0 .1; d[4,2]: O; d[4,3]: 0; d[4,4J: 0. 1: d[4,5J: 

randomize: {initialize random number generator} 

X 

y 
0; 
0; 

{set starting coordinates} 

for j 1 to 150 do make 150 trees } 

begin 
xpos : = random(MaxX): 
ypos : = random(MaxX): 
scale : = random(3) + 1: 
crand : = random(lO) + 1: 
case crand of 

0,1,2,3,4,5,6,7,8: 
color GREEN; 

9 color YELLOW: 
10 color BROWN; 

end; 

for i : = 1 to 800 do 
begin 

q : = random(lOO) + 1: 
if q < = 40 then 

k : = 2; 
if (q> 40) AND (q < 81) then 

k : = 3: 
if (q > = 81) AND (q < 95) then 

k : = 4; 
if (q > = 95 ) then 

k : = 1; 

X 

y 
d[k,l]•x + d[k,2]•y + d[k,5]: 
d[k,3]•x + d[k,4]•y + d[k,6]: 

pick tree position 

pick tree scale 
pick tree color 

most trees are green } 

some trees are yell ow } 

some trees die } 

800 pixels per tree } 

pick random number from 1 - 100} 
assign row according to } 
probability l 

{ transform coordinates } 

if > 10 then { skip first 10 iterations } 

end 
end. 

putpixel(xpos + round(x•MaxX/scale),round(ypos - y•MaxX/scale),color) 
end 

O; 
O; 
0; 

d[l,6]: = 0: 
d[2,6J: =0.2; 
d[3,6J: =0.2; 
d[4,6J : =0.2: 
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program galaxl; 
{ compute and display view of space using Michael Barnsley's 

IFS algorithm. 

12 - 5 - 93 Phil Laplante 
uses 

Graph; {include graphics package} 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 
i • j 

k 
MaxX 

: integer; 
integer; 
integer; 
real ; 
integer; 
integer; 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
pixel coordinates } 
loop counters} 
row selector } 

integer; maximum X and Y coordinates} 
d array[l. .5,1. .6] of real; { holds data of IFS attractor } 
scale 
xpos,ypos 

begin 

real; { random seal e factor} 
integer; { tree position } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error} 
begin 

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Wri tel n ('Program aborted'); 
Halt( 1) 

end; 
MaxX : = GetMaxX; { get screen limits } 

initialize IFS data array } 

d[l,l]: 0.33; d[l,2]: 0; d[l,3]: 0; d[l ,4]: 0.33; d[l.5]: 
d[2,1J: 0.33; d[2,2]: 0; d[2,3]: 0; d[2,4J: 0.33; d[2,5J: 
d[3,l]: 0.33; d[3,2J: 0; d[3,3]: 0; d[3,4J: 0.33; d[3.5J: 
d[4,1J: 0.33; d[4,2]: 0; d[4,3]: 0; d[4,4]: 0.33; d[4,5]: 
d[5,1]: 0.33; d[5,2J: 0; d[5,3J: 0; d[5,4J: 0.33; d[5,5J: 

MaxX : = GetMaxX; 

randomize; {initialize random number generator} 

x 0; {set starting coordinates} 
y 0; 

for j 1 to 150 do make stars l 
begin 
xpos 
ypos 

random(MaxX); 
random(MaxX); 

pick star position 
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1; d[l. 6]: = 1 · 
MaxX; d[2,6J: = 1; 
1; d[3,6J: = MaxX; 
MaxX; d[4,6]: = MaxX; 
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scale 

for i 
begin 

(random(5) + 1)/1000; 

1 to 800 do 

k random(5) + 1; 
x : d[k, l]•x + d[k,2]•y + d[k,5]; 
y : d[k,3]•x + d[k .4]•y + d[k,6]; 

( pick star scale l 

pick random row l 
transform coordinates 

if i > 10 then skip first 10 iterati ans 
putpixel(round(scale•x + xpos),round(scale•y + ypos),WHITE) 

end 
end 

end. 

program julial; 
( compute and display Julia set of cos z 

12 - 21 - 93 Phil Laplante 

uses 
Complex. Graph; ( include graphics and complex routines) 

canst 

var 

zoom= 2.0; 
attract= 0.0001; 

GraphDriver : integer ; 
GraphMode integer; 
ErrorCode integer; 
i. j integer; 
MaxY integer: 
scale real ; 
mag real ; 
iter integer: 
continue boolean; 
x. y real ; 
MaxColor integer; 

create 4 by 4 window l 
attractor sensitivity l 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 
Maximum Y screen coordinate) 
scale factor l 
square of magnitude of complex number l 
escape iteration counter l 
continue iteration counter l 
real and imaginary parts of z 
maximum number of colors on graphics card l 

begin 

{ initialize graphics ) 

GraphDriver : = Detect; (try to detect graphics card) 
InitGraph(GraphDriver.GraphMode,' ' ); {initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then (check for error) 
begin 

Wri tel n( 'Gr a phi cs error: '. GraphErrorMsg( ErrorCode)); 
Write l n ('Graphics ca rd not found'); 
Writeln('Program aborted'); 
Halt(l) 
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end: 
MaxColor : = GetMaxColor: find maximum number of colors l 

find maximum X screen coordinate 
calculate zoom factor) 

MaxY : GetMaxY: 
scale: = 2.0•zoom/MaxY: 

for i : 
begin 

for j 
begin 

0 to MaxY do MaxY is usually smaller than MaxX ) 

= 0 to MaxY do 

x : = scale•i - zoom: 
y : = zoom - scale•j: 
continue : = TRUE: 
iter : =0: 
while continue= TRUE do 
begin 

ccos(x,y,x,y); 
mag : = X*X + Y*Y: 
if mag< attract then 

continue : = FALSE 
else 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

calculate complex cosine 
calculate square of magnitude 

point is an attractor l 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function ) 
iter = iter + 1 

else point escapes, plot it l 
begin 

putpixel(i,j, iter div 2): 
continue : = FALSE { get out of loop ) 

end 
end while loop) 

end {j loop) 
end{ i loop) 

end. 

program julia2: 
{ compute and display Julia set of sine z 
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uses 
Complex, Graph; 

const 
zoom= 2.0: 
attract= 0.0001: 

var 
GraphDriver 
GraphMode 
ErrorCode 
i . j 
MaxY 
scale 

: integer: 
integer: 
integer: 
integer: 
integer: 
real : 
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{ include graphics and complex routines} 

create 4 by 4 window} 
attractor sensitivity ) 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 



mag 
iter 
continue 
X, y 
MaxColor 

real : 
integer: 
boolean: 
real : 
integer: 

square of magnitude of complex number I 
escape iteration counter J 

continue iteration counter J 

real and imaginary parts of z 
maximum number of colors on graphics card I 

begin 
( initialize graphics l 

GraphDriver : = Detect: (try to detect graphics card} 
InitGraph(GraphDriver,GraphMode , ' '): (initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then (check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCodell: 
Writel n( ' Graphics card not found' l: 
Writeln( ' Program aborted ' ): 
Halt(ll 

end: 
MaxColor GetMaxColor: find maximum number of colors J 

find maximum Y screen coordinate 
calculate zoom factor} 

MaxY : GetMaxY; 
scale: = 2.0•zoom/MaxY: 

for i : 0 to MaxY do MaxY is usually smaller than MaxX l 
begin 

for j = 0 to MaxY do 
begin 

x : = scale•i - zoom; 
y: = zoom - scale•j; 
continue : = TRUE; 
iter : = 0; 
while continue= TRUE do 
begin 

csin(x,y,x,y); 
mag : = X*X + Y*Y; 
if mag< attract then 

C'Ontinue : = FALSE 
else 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

calculate complex sine 
calculate square of magnitude 

point is an attractor J 

if (mag< 100) AND (iter < MaxColor•Zl then ( keep iterating function J 

iter = iter + 1 
else 

begin 
putpixel(i,j, iter 
continue : = FALSE 

end 
end while loop} 

end {j loop} 
end{ i loop} 

end. 

point escapes, plot it l 

div 2); 
( get out of loop J 
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program life; 
{ Simulate Conway's Game of Life 

1/29/93 Phil Laplante 

uses 
Crt; { unit for CRT driver ) 

const 
columns 
rows 
eel l 

type 

80; 
24; 
I* I ; 

number of columns on screen 
number of rows on screen ) 
eel l symbol ) 

eel l field array[l .. rows,l . . columns] of boolean; { "playing field " ) 

var 
Field 
cells 
oldcells 
FileName 
cell row 

procedure init; 

text; 
cell_field; 
cell_field; 
string; 
string[columns]; 

file containing initial universe) 
playing field for experiment ) 
holds copy of old cell field ) 
name of initial universe l 
row of cells ) 

{ initializes the cell configuration space (the "playing field " ) ) 
var 

i ,j : integer; 
begin 

end; 

for i : = 1 to rows do 
for j : = 1 to columns do 

cells[i,j]: = FALSE; { initialize cell space ) 

{ --------------------------------------------------------------

procedure display; 
{ displays array of cells to screen ) 
var 

i,j: integer; 

begin 
ClrScr; 

for i : = 1 to rows do 
begin 

for j : = 1 to columns do 
if cells[i ,j] = TRUE then 

write(cel l) { eel l in space ) 
else 

write(' '); no cell in space 
end 
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end; 

{ ----------------- --- ------------------------------------------

procedure load ; 
{ load initial cell file into array of cells } 
var 

i ,j : integer; 

begin 

end; 

write('lnput life file name'); 
readln(FileName); 
assign(Field,FileName); 

reset(Field); 
i nit; 
for i : = 1 to rows do 

begin 
readln(F i eld,cellrow); 
for j: = 1 to length(cellrow) do 

if cellrow[jJ = cell then 
cells [ i , j J : = TRUE 

end; 
close(Field) 

open file for reading 
initialize cell space 

{ live cell in space 

{ --------------- ---------------------------- -------------------

function count(i ,j:integer) : integer; 
{ count number of cells in neighborhood 
var 

l ,m : integer; 
sum: integer; 
srow, erow integer; 
scol, ecol : integer; 

begin 
sum : = O; 

loop counters 
running sum } 
starting and ending row locations ) 
starting and ending column locations 

initialize running sums 

if i = 1 then find starting row) 
srow - 1 

else 
s row - 1; 

if i = rows then { find ending row) 
e row rows 

else 
erow + l; 

if j = 1 then { find starting column ) 
s col : = 1 
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else 
scol j-1; 

if j = columns then ( find ending column J 

ecol columns 
else 

ecol j + 1; 

for l srow to erow do ( count nearby eel ls 
form:= scol to ecol do 
if (iOl) OR (j<>m) then don't count self J 

if oldcells[l ,m] = TRUE then 
sum:= sum+ l; 

count : = sum; ( return sum J 

end; 

( - - - - -- ------ - -------------------------------------------------

procedure rule; 
( apply Game of Life rule 

note that the first and last cells in a row are treated specially J 

var 
i ,j : integer; ( local counters l 

begin 

end; 

for i : = 1 to rows do 
for j : = 1 to columns do 

oldcells[i ,jJ : = cells[i ,jJ; 

i nit; 

for i : = 1 to rows do 
for j : = 1 to columns do 

case count(i ,j) of 
0,1 cells[i ,j] 
2: cells[i,j] 
3: cells[i ,j] 
4,5,6,7,8 cells[i,j] 
end 

remember old cell configuration ) 

initialize next configuration 

( count nearby cells l 
FALSE; 
oldcells[i ,jJ; 
TRUE; 
FALSE { overcrowding J 

{ -- -- ------ - --- -- -------- begin program- ---------------------- l 

var 
i : integer; 
iter : integer; 

begin 
load; 
write('File Loaded'); 
display; 

( number of iterations for simulation) 

write('Enter number of iterations for simulation'); 

II t'lppendbc (J 



readln(iter); 
write('Press Enter to Begin Simulation '); 
readln; 

end. 

for i : = 1 to i ter do 
begin 

rule; 
display 

end 

program life2; 

apply rule to cell field 
display updated universe 

{ Simulate Conway's Game of Life - generates random starting configuration 
1/29/93 Phi 1 Laplante 

uses 
Crt; { unit for CRT driver l 

canst 
columns 
rows 
cell 

type 

80; 
24; 
I* I : 

number of columns on screen 
number of rows on screen l 
eel 1 symbol l 

cell field array[l. .rows,l. .columns] of boolean; { "playing field" l 

var 
cells 
oldcells 
cell row 

procedure init; 

cell_fi el d; 
cell_field; 
string[columns]; 

playing field for experiment 
holds copy of old cell field 
row of cells l 

{ initializes the cell configuration space (the "playing field") } 
var 

i,j: integer; 
begin 

end; 

for i : = 1 to rows do 
for j : = 1 to columns do 

cells[i,j]: = FALSE; I initialize cell space l 

{ ------------------------------------------------------

procedure display; 
{ displays array of cells to screen l 
var 

i ,j : integer; 

begin 
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end; 

ClrScr; 

for i : = 1 to rows do 
begin 

for j : = 1 to columns do 
if cells[i,j] = TRUE then 

write(celll { cell in space l 
else 

write(' '); no cell in space 
end 

{ ------------------------ ----------------------------------------

procedure load; 
{ load initial cell file into array of cells l 
var 

i,j integer; 
temp: integer; 

begin 
hold random number l 

randomize; initialize random number generator l 

end; 

for i : = 1 to rows do 
for j : = 1 to columns do 

begin 
temp = random(2); select random number between 1 and 2 l 
if temp= 1 then 

cells[i ,j] TRUE 
else 

cells[i ,j] 
end; 

FALSE 

{ ----------------------------------------------------------------

function count ( i, j: integer l : integer; 
{ count number of cells in neighborhood 
var 

l ,m : integer; 
sum: integer; 
srow, erow integer; 
scol, ecol : integer; 

begin 
sum:= O; 

loop counters 
running sum l 
starting and ending row locations l 
starting and ending column locations 

initialize running sums 

if i = 1 then find starting row } 
srow 1 

else 
srow - l; 

if i = rows then 
erow: = rows 
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else 
erow + l; 

if j = 1 then { find starting column l 
scol 1 

else 
scol j-1 · 

if j = columns then { find ending column l 
ecol columns 

else 
ecol j + 1; 

for l : s row to erow do { count nearby cells 
form = scol to ecol do 

if (i<>l) OR (j<>m) then don't count self l 
if oldcells[l ,m] = TRUE then 

sum: = sum + l; 
count : = sum; { return sum l 

end; 

{ ------------------------------------------------------------

procedure rule; 
{ apply Game of Life rule 

note that the first and last cells in a row are treated specially 

var 
i . j integer; { local counters l 

begin 

end; 

for i : = 1 to rows do 
for j : = 1 to columns do 

oldcells[i ,j] : = cells[i ,jJ; 

i nit; 

for i : = 1 to rows do 
for j : = 1 to columns do 

case count( i ,j) of 
0,1 cells[i,jJ 
2: cells[i,jJ 
3: cells[i,jJ 
4,5,6,7,8 cells[i,j] 
end 

remember old cell configuration l 

initialize next configuration 

{ count nearby cells l 
FALSE; 
oldcells[i ,j]; 
TRUE; 
FALSE { overcrowding l 

{ ------------------------ begin program----------------------- l 

var 
i : integer; 
iter : integer; { number of iterations for simulation} 
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begin 
load; 
write(' File Loaded'); 
display; 
write('Enter number of iterations for simulation '); 
readln(iter); 
write(' Press Enter to Begin Simulation '); 
readln; 
for i : = 1 to iter do 
begin 

rule; 
display 

end 

apply rule to cell field 
display updated universe 

end. 

program Mandel; 
( compute and display Mandelbrot set 

12 - 21 - 93 Phil Laplante 

uses 
Complex, Graph; ( include graphics and complex routines} 

canst 

var 

zoom= 2.0; 
escape= 4.0; 

GraphDriver : integer; 
GraphMode integer; 
ErrorCode integer; 
i ' j integer; 
MaxY integer; 
scale real ; 
mag real ; 
iter integer; 
cx,cy real; 
x. y real ; 

create 2 by 2 window 
escape value } 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 
square of magnitude of complex number } 
escape iteration counter } 
x and y components of c } 
coordinate values in complex plane } 

begin 

( initialize graphics } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then (check for error} 
begin 

Writeln('Graphics error: '. GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
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end; 

Wri tel n( 'Program aborted ' ); 
Halt(l) 

MaxY GetMaxY; 
scale:= 2.0•zoom/MaxY; 

find maximum X screen coordinate 
calculate zoom factor} 

X 

y 
0; 
0; 

zet zO = 0 + Di l 

for i Oto MaxY do ( MaxY is usually smaller than MaxX l 
begin 

for j = 0 to MaxY do 
begin 

X : 

y : 
O; 
O; 

zet zO = 0 + Qi l 

ex: scale•i - zoom; sweep value of c l 
cy: zoom- scale•j; 
mag : = O; initial loop guards 
iter : = 0; 
begin 

while (iter < 30) and (mag< escape) do 
begin 

mult(x,y,x,y,x,y); 
add(x ,y,cx,cy,x ,y): 
mag:= x•x + y•y; 
iter = iter + l; 

end; 
if mag< escape then 

putpixel(i ,j, BLUE) 
end ( while loop} 

end (j loop} 
end( i loop} 

end. 

program Mandel2; 

( square z l 
( add c } 
( calculate square of magnitude l 
( increment counter l 

output blue for non-escapees} 

( compute and display unfilled Mandelbrot set 
12 - 21 - 93 Phi 1 Laplante 

uses 
Complex, Graph; 

const 
zoom 2.0: 
escape= 4.0; 

var 
GraphDriver 
GraphMode 
ErrorCode 
i' j 

: integer; 
integer ; 
integer; 
integer; 

( include graphics and complex routines} 

create 2 by 2 window 
escape value l 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
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MaxY 
MaxColor 
scale 

integer : 
integer ; 
real : 

Maximum Y screen coordinate} 
Maximum num ber of colors) 
scale factor I 

mag 
iter 

real : 
integer: 

square of magnitude of complex number I 
escape iteration counter l 

continue boolean: keep iterating? J 
cx,cy real : x and y components of c I 
x. y real : coordinate values in complex plane I 

begin 

{ initialize graphics l 

GraphDriver : = Detect: {try to detect grap hics card) 
InitGraph(GraphDriver,GraphMode, ' ' ); {initia l ize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error) 
begin 

Writeln( ' Graphics error : ' , GraphErrorMsg(ErrorCode)): 
Write l n('Graphics card not found'): 
Writeln( ' Program aborted ' ): 
Halt( ll 

end; 
MaxColor GetMaxColor: 
MaxY : GetMaxY: 
scale: 2.0•zoom/MaxY; 

get maximum number of colors l 
find max i mum X screen coordinate 
ca l culate zoom factor} 

X 

y 
0; 
0 ; 

zet zO = 0 + Oi l 

for i Oto MaxY do MaxY is usually smaller than MaxX l 
begin 

for j : = 0 to MaxY do 
begin 

X 

y 
0: 
0; 

{ zet zO = 0 + Qi J 

ex: scale•i - zoom ; 
cy: zoom - scale•j; 
mag = O; 
iter : = 0 : 
continue : = true; 
begin 

while (iter < MaxColor•2) 
begin 

mult(x,y,x ,y,x,y); 
add(x,y,cx,cy , x ,y) ; 
mag : = x•x + Y*Y: 
iter = iter + l; 

end; 
if mag> escape t hen 

beg i n 

sweep value of c l 

i nitia l loop guards 

and (mag< escape) 

square z l 
add c ) 

do 

calculate square of magnitude l 
increment counter l 

color escaping points) 

putpixel(i,j, iter di v 2); 

Im t'lppendix fJ 



continue : 
end 

FALSE 

end while loop) 
end { j loop l 

end{ i loop) 
end. 

program mazel; 
{ compute and display a "maze" 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 
uses 

Graph; 
var 

GraphDriver 
GraphMode 
ErrorCode 
X, y 

i 
k 
MaxY 

Phil Laplante 

include graphics package} 

: integer; Stores graphics driver number} 
integer; Stores graphics mode for driver} 
integer; Reports any error condition} 
real; pixel coordinates l 
longint; loop counters} 
integer; row selector } 
integer; maximum Y screen coordinate} 

d array[l .. 6,1 .. 6] of real; { holds data of IFS attractor l 

begin 
GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error) 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Wri tel n( 'Program aborted'); 
Halt( 1) 

end; 
MaxY : = GetMaxY; { get screen limits l 

initialize IFS data array l 

d[l,l]: 0.33; d[l,2]: 0; d[l,3]: 0; d[l ,4]: 0.33; d[l, 5]: 
d[2,l]: 0.33; d[2,2J: 0; d[2,3J: 0; d[2,4J: 0.33; d[2,5J: 
d[3,1J: 0.33; d[3,2J: 0; d[3,3J: 0; d[3,4]: 0.33; d[3,5J: 
d[4,l]: 0.33; d[4,2J: 0; d[4,3J: 0; d[4,4J: 0 . 33; d[4,5J: 
d[5,1J: 0.33; d[5,2J: 0; d[5,3J: 0; d[5,4J: 0.33; d[5,5J: 
d[6,1]: =0.33; d[6,2J: = 0; d[6,3J: = 0; d[6,4J: = 0.33; d[6,5J: 

MaxY : = GetMaxY; 

randomize; {initialize random number generator} 

1; d[l,6]: = 1; 
MaxY div 2. d[2,6]: 1; 
1; d[3,6J: = MaxY div 2; 
MaxY div 2; d[4,6J: = MaxY; 
MaxY; d[5,6J: = MaxY; 

= 1; d[6,6J: = MaxY; 
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X 0; 
y 0; 

for i : 
begin 

k 
X : 
y : 
if 

end 
end. 

{set starting coordinates) 

1 to 320000 do 

random(B) + l; 
d[k,l]•x + d[k,2]•y + d[k,5]; 
d[k,3J•x + d[k,4J•y + d[k,6]; 

pick random row ) 
transform coordinates 

i > 10 then skip first 10 iterations 
putpixel(round(2•x/3),round(2•y/3),DARKGRAY ) 

program prey; 
{ Simulate Wolf - Caribou populations 

1/29/93 Phil Laplante ) 

uses 
Crt; 

var 
caribou_0 
wolf 0 -

caribou 
wolf 

caribou _p 
wolf _p 

caribou b -
wolf d -
K 

iter 

real ; 
real ; 

real ; 
real ; 

real ; 
real ; 

real ; 
real ; 
real ; 

integer; 

integer; 

I unit for CRT driver ) 

initial caribou population 
initial wolf population ) 

current caribou population 
current wolf population ) 

previous caribou population 
previous wolf population ) 

caribou birth rate) 
wolf death rate ) 
contact-death ratio ) 

number of iterations to track ) 

begin 
ClrScr; I clear screen I 
write(' Enter initial caribou population '); 
readln(caribou_0); 
write(' Enter initial wolf population '); 
readln(wolf_0); 
write(' Enter caribou birth rate '); 
readln(caribou_b); 
write(' Enter wolf death rate '); 
readln(wolf_d); 

write(' Enter contact-death rate '); 
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end. 

readln(K); 

write(' Enter number of iterations (months) for simulation '); 
readln(iter); 

caribou_p 
wolf_p 

caribou_O; 
wolf_O; 

writeln('press enter to begin simulation '); 
readln; 

writeln(' wolves 
for i : = 1 to i ter do 

begin 
if i mod 22 = 0 then 
begin 

caribou'); 

write l n ('press enter to continue '): 
readln: 

end; 

ClrScr; 
writeln(' wolves caribou') 

calculate and output current populations. truncate to nearest integer ) 
caribou : = caribou_p + caribou_b • caribou_p- K • caribou_p • wolf_p; 
wolf : = wolf_p + k • caribou_p • wolf_p - wolf_d • wolf_p; 
writeln('month ',i:4, 
wolf:6:0.' ',caribou:6:0); 

caribou_p 
wolf_p 

end 

caribou; 
wolf 

{ reset previous generation counters ) 

program price; 
compute and display bifurcation diagram for 
mini-economic system given by 
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uses 
Graph; 

var 
GraphOriver 
GraphMode 
ErrorCode 
i . j 

Phil Laplante 

{ include graphics routines) 

: integer; 
integer; 
integer; 
integer; 

Stores graphics driver number) 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables) 

Program listings Ill 



MaxX integer; Maximum X screen coordinate} 
MaxY integer; Maximum Y screen coordinate} 
t real ; iterated value ) 

a real ; constant of iteration 
MaxColor integer; maximum number of colors on graphics 
scale real ; plotting scale factor ) 

begin 
GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,""); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error) 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCodell; 
Writeln('Graphics card not found ' ); 
Wri tel n ('Program aborted'); 
Halt(ll 

end; 
MaxColor GetMaxColor; 
MaxX GetMaxX; 
MaxY : = GetMaxY; 

scale : = MaxX/4; 

a : = 
for i 

begin 
t : 

2.50; 
= 1 to MaxX do 

0. 9; 

find maximum number of colors l 
find maximum X screen coordinate 
find maximum Y screen coordinate 

calculate overall scale factor l 

set starting point l 

calculate orbit about t=l 
iterate a l 

card 

a : = 
for j 

begin 

a+ 1.50/(MaxXl; 
: = 1 to 100 do calculate orbit after 200 iterations} 

t : = a•t- a•t•t; 
if j > 50 then 
begin 

calculate new price l 
skip first 50 iterations 

putpixel(i, round(MaxY/2 + t•scale ), GREEN); 
end 

end. 

end 
end 

program rabbit; 
{ compute and display Douady's Rabbit from the Julia set of 

f(zl = zA2 + -0.122 + 0.745i 
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uses 
Complex, Graph; { include graphics and complex routines} 
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const 

var 

zoom= 2.0; 
attract= 0.0001 ; 

GraphDriver : integer; 
GraphMode integer; 
ErrorCode integer; 
i. j integer; 
MaxY integer; 
scale real ; 
mag real ; 
iter integer; 
continue boolean; 
x. y real; 
MaxColor integer; 

creates 4 by 4 window 
attractor sensitivity 

Stores graphics driver number} 
Stores graphics mode for driver) 
Reports any error condition) 
loop variables} 
Maximum Y screen coordinate} 
scale factor l 
square of magnitude of complex number ) 
escape iteration counter ) 
continue iteration counter ) 
real and imaginary parts of z 
maximum number of colors on graphics card ) 

begin 

( initialize graphics } 

GraphDriver : = Detect; (try to detect graphics card) 
InitGraph(GraphDriver . GraphMode,' ' ); (initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then (check for error} 
begin 

Writeln( ' Graphics error: '. GraphErrorMsg(ErrorCode)); 
Writeln( 'Graphics card not found'); 
Writeln( ' Program aborted'); 
Halt( 1) 

end; 
MaxColor 
MaxY : 
scale: 

GetMaxColor; 
GetMaxY; 
2. 0•zoom/MaxY; 

find maximum number of colors ) 
find maximum Y screen coordinate 
calculate zoom factor) 

for i : 
begin 

0 to MaxY do MaxY is usually smaller than MaxX ) 

for j 
begin 

= 0 to MaxY do 

x : = seal e•i - zoom; 
y: = zoom - scale•j; 
continue : = TRUE; 
iter : =0 ; 
while continue= TRUE do 
begin 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

mult(x,y,x,y,x,y); ( square z ) 
add(x,y, - 0 . 122,0 . 745,x,y); { add constant 
mag : = x•x + y•y; { calculate square of magnitude 
if mag< attract then 

continue : = FALSE point is an attractor l 
else 

if (mag< 100) AND (iter < MaxColor•2) then { keep iterating function ) 
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iter : iter + 1 
else 

begin 
putpixel (i ,j, iter 
continue : = FALSE 

end 

{ point escapes, plot it } 

div 2): 
{ get out of loop I 

end while loop} 
end {j loop} 

end{ i loop} 
end. 

program forest_scene; 
{ compute and display forest of trees 

using Michael Barnsley's IFS algorithm 

12 - 5 - 93 
uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

i • j 
q 
k 
MaxX 
MaxY 
d 
scale 
xpos ,ypos 
crand 
color 

Frank D'Erasmo 

{include graphics package) 

: integer; Stores graphics driver number) 
integer; Stores graphics mode for driver) 
integer; Reports any error condition) 
real: pixel coordinates ) 
longint: loop counters) 
integer; random number ) 
integer: row selector ) 
integer; Maximum X screen coordinate) 
integer: Maximum Y screen coordinate) 
array[l .. 8,1 . . 6] of real; { holds data of IFS attractor) 
real; { random scale factor} 
integer; { tree position ) 
integer; { pick random color (green, blue, yellow) ) 
integer; { random color value) 

procedure trees; 
begin 
{ initialize IFS data array 

d[l.l]: 
d[2,1J: 
d[3,l]: 
d[4,1J: 

randomize; 

X 

y 
0; 
O; 

for j : 

0; d[l,2]: = 0; d[l,3] : = 0; d[l,4]: = 0 . 5; d[l,5]: = 0; d[l,6]: = 0; 
0.42: d[2,2]: = - 0.42; d[2,3J: = 0.42; d[2,4J: = 0.42; d[2,5J: = 0: d[2,6J: = 0.2; 

0.42; d[3,2J: 0.42; d[3,3J: - 0.42; d[3,4J: = 0.42; d[3,5]: = 0: d[3,6J: =0.2; 
0 . 1; d[4,2J: = 0: d[4,3J: = 0: d[4,4J: = 0.1; d[4,5]: = 0; d[4,6]: = 0.2; 

{initialize random number generator) 

{set starting coordinates) 

1 to 200 do { make 200 trees ) 
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begin 
xpos : = random(MaxX): 
ypos : = random( MaxX l: 
scale : = random(3) + 1: 
crand : = random(lO) + 1: 
case crand of 

0,1.2,3,4,5,6,7,8: 
color GREEN; 

9 : color YELLOW; 
10 : color RED: 

end: {case} 

for i : = 1 to 800 do 
begin 

q : = random(lOO) + 1: 
if q < = 40 then 

k : = 2: 
if (q > 40) AND (q < 81) then 

k : = 3; 
if (q > = 81) AND (q < 95) then 

k : = 4; 
if ( q > = 95 l then 

k: = l; 

pick tree position 

pick tree scale 
pick tree color 

most trees a re green } 

some trees a re yellow I 
some trees die } 

800 pixels per tree I 

pick random number from 1 - 100} 
assign column according to l 
probability l 

x : = d[k,l]•x + d[k,2]•y + d[k,5]; { transform coordinates l 
y : = d[k,3J•x + d[k,4J•y + d[k,6]: 
if (ypos- y•MaxY/scale > MaxY - 50) then {clears area on screen} 

putpixel(xpos + round(x•MaxX/scalel,round(ypos - y•MaxX/scale),color) 
end: 

end; 
end: 

procedure redwds; {generates redwood trees} 

begin 
{ initialize IFS data array } 

d[l. 1]: 0.33; d[l.2]: O; d[l.3]: 0; d[l.4]: 0.33: d[l. 5]: = 1 ; d[l.6]: = 0: 
d[2,l]: 0. 33: d[2,2J: O; d[2,3J: 0; d[2,4J: 0.33: d[2,5J: = MaxX: d[2,6J: = 0; 
d[3 . 1J: 0. 33: d[3,2]: 0; d[3,3J: 0; d[3,4]: 0 . 33; d[3,5J: =l; d[3,6J: = MaxX; 
d[4,1J: 0. 33: d[4.2J: 0: d[4,3J: 0; d[4,4]: 0.33; d[4,5J: = MaxX: d[4,6J: = MaxX: 
d[5,l]: 0.33; d[5,2]: O; d[5,3J: =2 : d[5,4]: 0.33; d[5,5J: MaxX div 2; d[5,6J: = 1; 
d[6,l]: 0.33; d[6,2J: = O; d[6,3J: =2: d[6,4J: 0.33; d[6,5]: = MaxX: d[6,6]: = MaxX div 
d[7,1J: = 0.33; d[7,2]: 0; d[7,3J: =2; d[7,4]: 0.33; d[7,5J: 1; d[7,6J: = MaxX div 2; 

2; 

d[8,1J: 0.33; d[8,2]: = O; d[8,3]: =2; d[8,4]: 0.33: d[8,5J: = MaxX div 2; d[8,6J: = MaxX: 

randomize: 

X 

y 

for 

0; 
0; 

{initialize random number generator} 

{set starting coordinates! 

1 to 300000 do {300,000 pixels! 
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begin 
k random(8) + 1; 
x : d[k,l]•x + d[k,2]•y + d[k , 5]; 

pick random column } 
transform coord i nates 

y: d[k , 3J•x + d[k,4J•y + d[k , 6]; 
put pixel ( round ( 2•x / 3) , round ( 2•y / 3) , RED) ; 
putpixel ( round(2•(x + 1)/3),round(2•(y + 1)/2),RED) 

end ; 
end; 

procedure clouds; 
begin 

{generates mist/c l ouds} 

in i tialize IFS data array } 

d[l. 1]: 0.33; d[l,2] : 1; d[l,3]: 0 ; d[l ,4] : 0.33 ; 
d[ 2,1J : 0 . 33 ; d[2,2J: 1 ; d[2 , 3]: O; d[ 2 ,4J : 0 . 33 ; 
d[ 3,1J: 0.33; d[3 , 2]: 1. d[3,3]: 0 ; d[ 3,4] : 0 . 33; 
d[4,1J: 0.33; d[4,2J: 1; d[4,3J: O; d[4 ,4J : 0 . 33 ; 
d[5,1J: 0.33; d[5,2] : 0; d[5,3J: 0; d[5,4J : 0 . 33; 
d[6 , l] : 0.33; d[6,2J: 0; d[6,3J: O; d[ 6 ,4J: 0.33 ; 
d[7 , 1J: 0.33 ; d[7 , 2J: O; d[7 , 3J: 0; d[7 ,4J : 0 . 33 ; 
d[8,1J : 0.33 ; d[8,2J : O; d[8,3J: 0 ; d[8 , 4J : 0 . 33; 

randomize; {initialize random number generator} 

X 1 ; (set starting coord i nates} 
y 50 ; 

d[ l, 5]: 
d[2 , 5J : 
d[3,5J : 
d[ 4, 5J : 
d[5,5J: 
d[6 , 5J: 
d[7 , 5J: 
d[8,5J: 

for i 1 to 30000 do 30 , 000 pixels } 
begin 

k random(8) + l; 
x: d[k,l]•x + d[k , 2]•y + d[k , 5]; 
y : d[k,3]•x + d[k,4]•y + d[k , 6] ; 
if y < 200 then 

pick random column 
transform coordinates 

putpixel(round(2•x/3) , round(2•y/3),LIGHTGRAY) 
end; 

end; 

begin {main} 
GraphOriver : = Detect ; {try to detect graphics card} 
InitGraph(GraphDriver ,GraphMode, ' ' ); {initialize graphics} 
ErrorCode : = GraphResult; 
i f ErrorCode <> grOk then {c heck for error} 
begin 

end; 

Writeln( ' Graphics error : ', GraphErrorMsg(ErrorCode)); 
Writeln( ' Graphics card not found ' ) ; 
Writeln( 'Program aborted ' ); 
Halt(l) 

MaxY: = GetMaxY; 
MaxX : = GetMaxX ; 
trees ; 
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= O; d[l.6] : = O; 
= MaxY ; d[2,6] : = 0 ; 
= 1 ; d[3 , 6J: = MaxY ; 
= MaxY ; d[4,6J : = MaxY ; 
= MaxY div 2; d[5,6J : =l ; 
= MaxY; d[6 , 6J: = MaxY di v 2; 

1 . d[7 , 6J : = MaxY div 2 ; 
= MaxY di v 2 ; d[8 , 6J: = MaxY; 



redwds; 
clouds 

end. 

program rocks; 
{ compute and display "clouds" fractal 

using Michael Barnsley's IFS algorithm 
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uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

Frank D'Erasmo } 

{include graphics package} 

: integer; Stores graphics driver number} 
integer: Stores graphics mode for driver} 
integer: Reports any error condition} 
real; pixel coordinates } 
longint; loop counters} 
integer; row selector } 
integer; Maximum X screen coordinate} 

k 
MaxY 
d array[l. .4,1. . 6] of real; { holds data of IFS attractor } 

begin 
GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error} 
begin 

end: 

Writeln ( 'Graphics error: '. GraphErrorMsg(ErrorCode)); 
Writeln ( 'Graphics card not found'); 
Writel n( 'Program aborted'); 
Halt(l) 

MaxY : = GetMaxY; 

initialize IFS data array } 

d[l.l]: 
d[2,l]: 
d[3,1J: 
d[4,l]: 

0. 5; 
0. 5; 
- 0.4; 
- 0. 5; 

d[l,2]: = 0; d[l,3]: = 0: 
d[2,2J: = 0; d[2,3J: = 0: 

d[3,2J: 0; d[3,3J: l; 
d[4,2]: = 0; d[4,3J: = 0; 

d[l,4]: = 0.5; d[l,5]: = O; d[l,6]: = 0; 
d[2,4]: = 0.5; d[2,5J: = 2; d[2,6J: = 0; 

d[3,4J: 0.4; d[3,5J: O; d[3,6]: l; 
d[4,4J: = 0.5; d[4,5]: = 2; d[4,6J: = l; 

randomize; 

X 

y 
0; 
0: 

for i 
begin 

{initialize random number generator} 

{set starting coordinates} 

1 to 320000 do 
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k 
X 

y 

random(4) + 1: 
d[k,l]•x + d[k,2J•y + d[k,5] : 
d[k,3]•x + d[k,4]•y + d[k ,6]; 

pick random number from 1 - 41 
transform coordinates I 

if i > 10 then skip first 10 iterations 
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),BROWN) 

end { scale for screen } 
end. 

program seals: 
{ compute and display seals or dolphins 

using Michael Barnsley's IFS algorithm 
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uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

Frank D'Erasmo 

{include graphics package} 

: integer: Stores graphics driver number} 
integer; Stores graphics mode for driver} 
integer: Reports any error condition} 
real: pixel coordinates } 
integer: loop counters} 
integer: row selector } 
integer: Maximum Y screen coordinate} 

k 
MaxY 
d array[l. .4,1. . 6] of real: { holds data of IFS attractor } 

begin 
GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode, ''): {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 

Writeln( 'Graphics error: ', GraphErrorMsg(ErrorCode)): 
Writeln('Graphics card not found'): 
Writeln( 'Program aborted'): 
Halt(l) 

end; 

MaxY : = GetMaxY: 

initialize IFS data array I 

d[l,1]: - 0.5: d[l,2]: O; 
d[2,1]: - 0. 5; d[2,2J: O; 
d[3,1J: - 0.4; d[3,2]: 0 : 
d[4,1]: - 0. 5: d[4,2J: 0: 

randomize; {initialize 

d[l,3]: 
d[2,3J: 
d[3 , 3J: 
d[4,3]: 

random 

0: d[l ,4]: 0. 5; 
0; d[2,4J: 0. 5; 
1: d[3,4] : 0.4; 
0: d[4,4J: 0. 5: 

number generator} 

X : = 0: {set starting coordinates} 

- Appendix lj 

d[l, 5]: 
d[2 , 5]: 
d[3,5]: 
d[4 , 5J: 

0; 
2; 
O; 
2: 

d[l,6]: 
d[2,6]: 
d[3 ,6J: 
d[4,6J: 

O; 
O; 
1; 
1: 



y : 0; 

for i 1 to 32000 do 
begin 

k 
X : 
y : 

if 

random(4) + l; 
d[k,l]•x + d[k,2J•y + d[k,5]; 
d[k,3]•x + d[k,4]•y + d[k,6]; 

pick random number from 1 - 4) 
transform coordinates l 

> 10 then skip first 10 iterations 
putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),WHITEJ 

end; { scale for screen l 
end. 

program seaweed; 
{ compute and display seaweed 

using Michael Barnsley's IFS algorithm 
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uses 

var 

Graph; 

GraphDri ver 
GraphMode 
ErrorCode 
X, y 

Frank D'Erasmo 

{include graphics package) 

: integer; Stores graphics driver number) 
integer; Stores graphics mode for driver) 
integer; Reports any error condition) 
real; pixel coordinates l 
longint: loop counters) 
integer; row selector l 
integer; Maximum Y screen coordinate) 

k 
MaxY 
d array[l. .4,1. .6] of real; { holds data of IFS attractor l 

begin 
GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode grOk then {check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Writeln( 'Program aborted'); 
Halt(l l 

end; 

MaxY : = GetMaxY; 

initialize IFS data array ) 

d[l,lJ: 
d[2,l]: 
d[3,l]: 
d[4,l]: 

0. 5; 
0. 5; 
0.4; 
0. 5; 

d[l,2]: 
d[2,2]: 
d[3,2J: 
d[4,2J: 

0; d[l,3]: 
O; d[2,3]: 
0; d[3,3]: 
0; d[4,3J: 

0; 
0; 
1. 

= O; 

d[l,4]: 
d[2,4J: 
d[3,4]: 
d[4,4J: 

0. 5; 
0.5; 
0 .4; 
0. 5; 

d[l, 5]: 
d[2,5J: 
d[3,5J: 
d[4,5J: 

O; d[l,6]: 
2; d[2,6J: 
0; d[3,6J: 
2; d[4,6J: 

0; 
0; 
1; 
1; 
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randomize; {initialize random number generator} 

X 

y 

O; 
0; 

{set starting coordinates} 

for i 1 to 320000 do {320,000 pixels} 
begin 

k random(4) + l; {pick random number from 1-4) 
x : d[k,l]•x + d[k,2J•y + d[k,5]; { transform coordinates } 
y : d[k,3]•x + d[k,4]•y + d[k,6]; 
if i > 10 then { skip first 10 iterations 

putpixel(round(MaxY•x/2),MaxY - round(MaxY•y/2),GREEN) 
end; { scale for screen } 

end. 

p rag ram siege l ; 
{ compute and display a Siegel disk - the Julia set of 
f(z) zA2 - 0 . 39054 - 0.58679i 
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uses 

Complex. Graph; 

canst 

var 

zoom= 2.0; 
attract= 0.0001; 

GraphDriver : integer; 
GraphMode integer ; 
ErrorCode integer; 
i. j integer; 
MaxY integer; 
scale real ; 
mag real ; 
iter integer; 
continue boolean; 
X, y real ; 
MaxColor integer; 

begin 

{ initialize graphics } 

{ include graphics and complex routines} 

create 4 by 4 window} 
attractor sensitivity J 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 
square of magnitude of complex number l 
escape iteration counter } 
continue iteration counter } 
real and imaginary parts of z 
maximum number of colors on graphics card } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 
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Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln( 'Graphics card not found'); 
Writeln( 'Program aborted' l: 
Halt(ll 

end: 
MaxColor GetMaxColor: 
MaxY : GetMaxY: 
scale: = 2.0•zoom/MaxY: 

find maximum number of colors } 
find maximum Y screen coordinate 
calculate zoom factor} 

for i : 0 to MaxY do MaxY is usually smaller than MaxY } 
begin 

for j = 0 to MaxY do 
begin 

x : = seal e•i - zoom; 
y : = zoom - scale•j: 
continue : = TRUE: 
iter : = 0: 
while continue= TRUE do 
begin 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

mult(x,y,x,y,x,y); ( square z } 
add(x,y, - 0.390540, - 0.58679,x,y); ( add constant} 
mag : = x•x + Y*Y: ( cal cul ate square of magnitude 
if mag< attract then 

continue : = FALSE point is an attractor } 
else 

if (mag< 100) AND (iter < MaxColor•2) then ( keep iterating function } 
iter = iter + 1 

else point escapes, plot it J 

begin 
putpixel(i,j, iter div 2): 
continue : = FALSE ( get out of loop } 

end 
end while loop} 

end (j loop} 
end( i loop} 

end. 

program sierp: 
( compute and display Sierpinski triangle via random orbits 
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uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 
triangle 
i , j , k 

: integer: 
integer: 
integer: 
integer; 
integer; 
integer; 

(include graphics package} 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
pixel coordinates } 
select random triangle} 
loop counters} 
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MaxY integer; maximum X and Y coordinates} 

begin 
GraphDr i ver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode, · ' ); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error } 
begin 

Writeln('Graphics error: ' . GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found ' ); 
Writeln( ' Program aborted'); 
Halt(l) 

end; 

MaxY : = GetMaxY; 

randomize; {initialize random number generator} 

x random(MaxY) ; {select random starting point} 
y random(MaxY); {use MaxX=MaxY l 

for i : = 1 to 20000 do 
if i > 1000 then 
begin 

skip first few points } 

triangle:= random(3) + l; { select random number between 1 and 3} 
case triangle of { select which triangle to measure from} 
1 : begin 

X x div 2· 
y (MaxY + y) div 2 

end. 

end; 
2: begin 

X (MaxY div 
y y div 2 

end; 
3: begin 

X (MaxY + x) 
y (MaxY + y) 

end 
end; 

putpixel(x,y,WHITE) 
end { i loop} 

program sierp2; 

2 + x) 

div 2; 
div 2 

{ compute and display Sierpinski triangle 
using Michael Barnsley's IFS algorithm 

12 - 5 - 93 Phi l Laplante 
uses 

{ find 1/2 way point to A} 

div 2; { find 1/2 way point to B 

{ find 1/2 way point to C} 

{ output pixel } 

Graph; {include graphics package} 

1111 AppendixrJ 

} 



var 
GraphOriver 
GraphMode 
ErrorCode 
X, y 
i 
MaxY 
k 

: integer; Stores graphics driver number} 
integer; Stores graphics mode for driver} 
integer; Reports any error condition} 
real; pixel coordinates l 
integer; loop counter l 
integer; maximum X and Y coordinates} 
integer; select random row l 

d array[l .. 3,1. .6] of real; { holds data of IFS attractor l 

begin 
GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode,' '); (initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Writel n( 'Program aborted'); 
Halt(l l 

end; 

initialize IFS data array 

d[l.lJ: 0. 5; d[l.2]: 0; d[l,3]: 0; d[l ,4]: 0. 5; d[l.5]: 
d[2,l]: 0. 5; d[2,2J: 0; d[2,3J: 0; d[2,4J: D. 5; d[2,5J: 
d[3,1J: 0. 5; d[3,2J: 0; d[3,3]: 0; d[3,4J: 0. 5; d[3,5J: 

MaxY : = GetMaxY; 

randomize; (initialize random number generator} 

x 0.0; {set starting coordinates} 
y 0.0; 

for i : = 1 to 30000 do 
begin 

k random(3) + l; 
x: d[k,l]•x + d[k,2]•y + d[k,5]; 
y: d[k,3]•x + d[k,4J•y + d[k,6]; 

pick random row l 
transform coordinates 

25; 
1; 

50; 

if i > 10 then skip first 10 iterations 

d[l,6]: 
d[2,6J: 
d[3,6J: 

putpixel(round(x•MaxY/100),round(y•MaxY/100),WHITE) { convert to screen} 
end 

end. 

program snow; 
( compute and display "snow" from the Julia set of 

f(z) = zA2 0.11031 - 0.67037i 

1; 
50; 
50; 
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uses 

Complex, Graph; { include graphics and complex routines} 

canst 

var 

zoom = 1. 5; 
attract= 0.0001; 

GraphDriver : integer; 
GraphMode integer ; 
ErrorCode integer; 
i . j integer; 
MaxY integer; 
scale real ; 
mag real ; 
iter integer; 
continue boolean; 
X, y real ; 
MaxColor integer; 

create 3 by 3 window l 
attractor sensitivity l 

Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
loop variables} 
Maximum Y screen coordinate} 
scale factor } 
square of magnitude of complex number l 
escape iteration counter l 
continue iteration counter l 
real and imaginary parts of z 
maximum number of colors on graphics card l 

begin 

{ initialize graphics } 

GraphDriver : = Detect; {try to detect graphics card} 
InitGraph(GraphDriver,GraphMode, ' ' ); {initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error} 
begin 

Writeln('Graphics error : '. GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found ' ); 
Wri tel n( 'Program aborted ' ); 
Halt(l) 

end; 
MaxColor 
MaxY : 
scale: 

for i : 
begin 

for j 
begin 

GetMaxColor; find maximum number of colors l 
GetMaxY; find maximum Y screen coordinate 
2.0•zoom/MaxY; calculate zoom factor} 

0 to MaxY do ·{ MaxY is usually smaller than MaxY l 

= 0 to MaxY do 

x : = scale•i - zoom; 
y : = zoom - scale•j; 
continue : = TRUE; 
iter : = 0; 
while continue= TRUE do 
begin 

set starting value of real(z) 
set starting value of imag(z) 
assume point does not escape 

mult(x,y,x,y,x,y); { square z } 
add(x,y,0.11031, - 0.67037,x,y); { add constant l 
mag : = x•x + y•y; { calculate square of magnitude l 
if mag< attract then 
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continue : = FALSE point is an attractor l 
else 

if (mag< 100) AND (iter < MaxColor•2) then ( keep iterat i ng funct i on ) 
iter = iter + 1 

else point escapes, plot it l 
begin 

if(iter div 2 = WHITE) then (output white only 
putpixel(i,j, WHITE): 

continue : = FALSE get out of loop l 
end 

end while loop) 
end (j loop) 

end ( i loop) 
end. 

program swamp: 
( compute and display a swamp 

using Michael Barnsley's IFS algorithm 
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uses 

Graph; 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

i • j 
q 
k 
MaxX 

Phil Laplante 

(include graphics package) 

: integer; Stores graphics driver number} 
integer; Stores graphics mode for driver) 
integer: Reports any error condition) 
real; pixel coordinates l 
integer; loop counters) 
integer; random number l 
integer; row selector l 
integer; Maximum X screen coordinate) 

d array[l. .4,1. .6] of real: { holds data of IFS attractor l 
real; ( random seal e factor) 
integer; ( plant position l 

scale 
xpos,ypo s 
crand integer: ( pick random color (green, yellow, lightgreen)l 
color integer; ( random color value l 

begin 
GraphDriver : = Detect; (try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,'' ): (initialize graphics} 
ErrorCode : = GraphResult; 
if ErrorCode <> gr0k then {check for error) 
begin 

Writeln('Graphics error: ' , GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Writeln( 'Program aborted'): 
Halt(l) 

end: 

MaxX GetMaxX: 
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initialize IFS data array 

d[l,l]: 
d[2,l]: 
d[3,1J: 
d[4,1J: 

0.5; d[l,2]: = O; d[l,3]: = O; d[l,4]: = 0.25; d[l,5]: 
0.25; d[2,2]: = O; d[2,3]: = O; d[2,4]: = 0.7; d[2,5]: 
0.25; d[3,2]: = O; d[3,3]: = O; d[3,4]: = 0.7; d[3,5]: 
0.5; d[4,2]: = O; d[4,3]: = O; d[4,4]: = 0.25; d[4,5]: 

randomize; {initialize random number generator} 

X 

y 
0; 
O; 

for j : 
begin 
xpos : 
ypos : 
scale 
crand 
case 

{set starting coordinates} 

= 1 to 70 do make 

= random(MaxX); pick 
= random(MaxX); 

: = random(3) + l; pick 
: = random(lO) + l; pick 
crand of 

0,1,2,3,4,5,6,7,8: 
color GREEN; most 

70 plants } 

plant position 

plant scale 
plant color 

plants a re green 

l; d[l,6]: = l; 
50; d[2,6]: = l; 
l; d[3,6J: = 50; 
50; d[4,6]: = 50; 

} 

9 color YELLOW; some plants a re yellow } 

10 color LIGHTGREEN; 
end; 

for i : = 1 to 3000 do 
begin 

k random(4) + l; 

some plants a re l i ghtgreen l 

pick random row} 

X 

y 
d[k,l]•x + d[k,2]•y + d[k,5]; 
d[k,3]•x + d[k,4]•y + d[k,6]; 

transform coordinates 

if > 10 then { skip first 10 iterations 
putpixel(xpos + round(x•scale),round(ypos- y•scale),color) 

end 
end 

end. 

program tree; 
{ compute and display a tree 

using Michael Barnsley's IFS algorithm 
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uses 

Graph; {include graphics package} 

var 
GraphDriver 
GraphMode 
ErrorCode 
X, y 

: integer; 
integer; 
integer; 
real ; 
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Stores graphics driver number} 
Stores graphics mode for driver} 
Reports any error condition} 
pixel coordinates l 



integer; loop counters) 
q integer; random number l 
k integer; row selector ) 
MaxY integer; Maximum Y screen coordinate) 
d array[l. .4,1. .6] of real; { holds data of IFS attractor l 

begin 
GraphDriver : = Detect; {try to detect graphics card) 
InitGraph(GraphDriver,GraphMode,' '); {initialize graphics) 
ErrorCode : = GraphResult; 
if ErrorCode <> grOk then {check for error) 
begin 

end; 

Writeln('Graphics error: ', GraphErrorMsg(ErrorCode)); 
Writeln('Graphics card not found'); 
Writeln('Program aborted'); 
Halt(l) 

MaxY : = GetMaxY; 

initialize IFS data array 

d[l, 1]: 

d[2,l]: 
d[3,1J: 
d[4,1J: 

0; 
0.42; 
0.42; 
0 .1; 

d[l,2]: 
d[2.2J: 
d[3,2]: 
d[4,2]: 

0; d[l,3]: = 0; d[l,4]: = 0.5; d[l,5]: = 0; d[l,6]: = 0; 
- 0.42; d[2,3]: = 0.42; d[2,4]: = 0.42; d[2,5]: = O; d[2,6]: = 0.2; 
0.42; d[3,3J: - 0.42; d[3,4J: = 0.42; d[3,5J: = O; d[3,6]: = 0.2; 
O; d[4,3]: = 0; d[4,4]: = 0.1; d[4,5]: = O; d[4,6J: = 0.2; 

randomize; {initialize random number generator) 

{set starting coordinates) X 

y 
0; 
0; 

for i 1 to 30000 do 

end. 

begin 
q : = random(l00) + l; 
if q <= 40 then 

k : = 2; 
if (q > 40) AND (q < 81) then 

k : = 3; 
if (q > = 81) AND (q < 95) then 

k : = 4; 
if (q > = 95 ) then 

k : = 1; 

x : = d[k,l]*X + d[k,Z]*y + d[k,5]; 
y : = d[k,3J•x + d[k,4]•y + d[k,6]; 

pick random number from 1 - 100} 
assign row according to l 
probability } 

transform coordinates ) 

if i > 10 then skip first 10 iterations 
putpixel(round(MaxY/2 + 3•MaxY•x),round(MaxY- 3•MaxY•y),GREEN) 

end { scale for screen l 
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(jlossary 
affine transformations Mathematical operations involving sliding, 
stretching, and rotating. 

algorithm A recipe or set of rules that describes some process. 

aspect ration In computer screens, the ratio of the length of the 
x-coordinate range to the y-coordinate range. 

attractor The point to which an iterated function tends toward if it 
doesn 't escape and is not indifferent. 

attractor sensitivity The threshold to which a function f (z) is iterated at 
the point z0. If the square of its modulus at any point is less than the attractor 
sensitivity, then the point attracts. 

basin of attraction The set of all points that, when iterated by a function 
f, attract to the same point. 

bifurcation diagram A diagram of an iterated function against the value 
of a swept constant. In many cases, this generates a fractal that tends to 
have two zones of activity. 

binary variables and constants Variables and constants that can only 
take on the values O or 1. 

Boolean AND operation A logical operation on binary variables and 
constants that produces a one only if both operands are one. It's usually 
denoted as •. 

Boolean complement A logical operation on a binary variable or 
constant that produces a one if the operand is a zero, and vice versa. It's 
usually denoted by a bar over the operand. 

Boolean OR operation A logical operation on binary variables and 
constants that produces a one if one or both operands are one. It's usually 
denoted as+. 

Cantor middle third argument A recursive mathematical procedure 
involving the removal of the middle third of a line segment. 

Cantor set The result of applying the Cantor middle third. 

cellular automata A type of dynamical system involving matrices or 
cells. 

chaos A state of disorder. 

chaotic system Those that, when they are in equilibrium, are in unstable 
equilibrium. 
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complex conjugate If z = a+ bi is a complex number, then its complex 
conjugate, denoted z, is z = a - bi. 

complex number A number that has both real and imaginary parts. For 
example, in the complex number 3 + 4i, 3 is the real part and 4 is the 
imaginary part. 

complex plane A map where complex numbers are plotted. It's similar 
to the Cartesian plane, except that the y-axis is labelled as "iy." 

complex variables Placeholders for complex variables. Usually denoted 
by some variant of the letter z. 

continuous simulation A model involving differential equations. 

compression ratio The ratio of the bytes required to store an 
uncompressed image to those needed to store the compressed equivalent. 

discrete simulation A computer model using finite difference equations. 

differential equations An equation involving a function and its 
derivatives. 

dynamical systems A subfield of mathematics that's concerned with 
the repeated application of an algorithm. 

escape When the result of iterating a function at a point tends toward 
infinity or minus infinity. 

Fibonacci sequence A sequence of numbers that begins with 0, 1, then 
proceeds by adding the preceding two numbers in a sequence to get the next. 

filled Mandelbrot set A Mandelbrot set in which colors aren't used. 

finite difference equation A recursive equation that describes a 
function at time tin terms of the function at previous time samples, t - 1, 
t- 2, and so on. 

fractal An image with an infinite amount of self-similarity. 

fractal dimension Fractional dimension of geometric images. Defined as 
the logarithm of the number of self-similar pieces divided by the logarithm of 
the magnification needed to obtain them. 

function In mathematics, a mapping or rule. 

function composition The process of applying a function to the result of 
another function or itself. 

function iteration Repeated composition of a function. 

hyperbolic cosine A cosine function defined on real numbers. In 
particular, if xis a real number, then: 

ex+ e-x 
cosh(x)= --

2 



hyperbolic sine A sine function defined on real numbers. In particular, if 
x is a real number, then: 

ex - e-x 
sinh(x) = --

2 

image compression The process of reducing the amount of stored 
information needed to reproduce an image. 

imaginary part In a complex number, the component that consists of a 
real number (a number found on the number line) times the positive square 
root of -1, denoted i. 

indifferent A point that, under iteration, acts as neither an attractor nor a 
repelling point. 

inverse For a real function t, if its inverse is 1-1, then 1-1(f(x)) = x. 

iteration Repeated composition of a function or procedure. 

iterated function systems A way to generate fractals by the repeated 
application of special geometric procedures. Abbreviated as IFS. 

Julia set A complex function, f (z), is the boundary of the set of points 
that escape. 

logistics equation An equation first proposed as a model for population 
growth. It's given by: 

P(t + 1) = aP(t) - aP(t) 2 

In this equation, aP(t) is the previous year's population plus newborns, and 
aP(t)2 is the death rate. Plotting the values of P(t) over many years and over 
many values of a yields a bifurcation diagram. 

matrix A mathematical construct that consists of rows and columns that 
hold numbers. 

Mandelbrot set The set of complex constants c; for which the orbits of 
the function f (z) = g(z) + C; evaluated at the initial condition of z0 = 0, don't 
escape. The Mandelbrot set is usually found for the function g(z) = z2. 

modulus The modulus of a complex number, z, is equal to the square root 
of the sum of the squares of its real and imaginary parts. 

noncommutative algebra An algebraic system where the commutative 
laws don't hold. For example, x • y = y • x does not hold for quaternions. 

one-dimensional cellular automaton A cellular automaton in which 
you trace the evolution of the system by observing a row of cells at time t 
followed by the row at time t + 1, and so on. 

orbits See function iteration. 

pixels Screen picture elements capable of displaying one or more colors. 
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quaternions Hyper-complex numbers (complex number pair) used in the 
generation of three-dimensional fractals. 

random orbits Attracting points determined by iteration of random 
starting points by an appropriate geometric procedure. 

real number Any number that can be found on the real number line. 

real part In a complex number, the component that consists of a real 
number, that is , a number that can be found on the number line. 

recursive Mathematical, graphical, or geometric procedures that are self­
referential. 

repelling point A point that escapes. 

resolution On a computer screen, the density of the pixels. 

scene analysis The process of extracting specific features from a larger 
picture or scene. 

self-similar In an image, when the structure of the whole is reflected in 
every part. 

sensitive dependence On initial conditions, a system that's subject to 
great variance in later states due to only slight variance in the initial 
conditions. 

Sierpinski gasket A fractal created by repeatedly dividing a square into 
nine equal-sized squares and removing the middle one. Also known as 
Sierpinski. carpet. 

Sierpinski triangle A fractal generated by repeatedly dividing a triangle 
into four self-similar ones and removing the inner fourth one. 

stable equilibrium A system that can't easily be moved to a chaotic 
state. 

strange attractor When the attracting set of an iterated function or 
procedures is a fractal. 

turbulence A chaotic system condition characterized by disorder on all 
scales, with backward eddy currents and circular waves. 

two-dimensional cellular automaton A cellular automaton in which a 
cell's contents at time tis based on its own contents and the contents of all 
its immediate neighbors at time t - 1. 

unstable equilibrium A system that can easily move into a chaotic 
state. 
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References 
1For example see the "Back to the Future" movies. 

2For example, in George Herbert's Jacula Prudentum, referring to the tragic 
Richard III, "For want of a nail a shoe is lost, for want of a shoe a horse is lost, 
for want of a horse the rider is lost, [for want of a king, England was lost]." In 
Poor Richard's AhnanacBen Franklin prefaced the quote with, "A little 
neglect may breed great mischief." 

3There might be musical fractals. For example, many canons and fugues have 
a recursive self-similarity. In addition, a school of musical thought called 
minimalism tends to produce sounds that are inherently self-similar. 

4From "On Poetry.A Rhapsody" (1733). 

5There is a paradox here, however. If you rigorously set this up as an equation 
with limits and solve it for an infinite number of iterations, the answer is that 
you do reach the wall. This is counter-intuitive and contradictory. In fact, 
this is well known by mathematicians as Zeno's "Achilles Paradox." But so 
as not to spoil the fun, let's assume that you can't reach the wall this way. 
Who has the time to do it infinitely anyway? 

6Let's assume that y is a positive integer. 

1Engineers denote the positive square root of -1 as j. 

2The term a 2 -b2 i is called the complex conjugate of a 2 + b2 i 

3If you are unfamiliar with trigonometry, you may wish to skip this section. 

4Notice that these functions are defined in terms of the special constant e, 
which is roughly equal to 2.718. e has a special importance to mathematicians, 
scientists, and engineers, which is similar to that of 1t and i. 

5Note that ei• = 1, thus harmoniously uniting four important constants. 

6These numbers are entirely arbitrary. 

70rbit is another term for iterated function values. 

8Recall that for a real function J, with inverse J- 1, then J-1(/ (x))=x. 

ehapter1 

ehapter2 

1A finite difference equation is a recursive equation that describes a function at ehapter 3 
time t in terms of the function at previous time samples, t-1, t-2, and so on. 

2The same mechanism has been investigated as a model for wiring local 
phone systems. 

3An electrocardiogram (ECG or EKG) measures electrical activity in the heart. 
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llil References 

1Turbulent flow is found in many natural settings. For example, waterfalls and 
crashing waves are clearly turbulent, but here, I'll discuss turbulent flow in 
the context of human-made situations. 

2Boolean operations are intended to be applied to binary variables and 
constants. Binary variables and binary constants can only take on the values 
0 or 1. 

3Do not use non-ASCII editors such as WordPerfect 



A 
addition, complex numbers, 25-26 
affine transformations, 12-14 
algebra, noncommutative algebra, 39 
algorithms for fractals, 4-5 
AMOEBA.PAS program, 46 

companion-disk program, 142 
graphics output, 46 
Pascal source code, companion-disk, 142 
program listings, 81-82 

animal images, 45 
aspect ratio, 78 
attractor points, 6 

attractor sensitivity, 30 
bifurcation diagrams, 6-8, 7 
complex numbers, Julia sets, 29-35 
Mandelbrot sets, 35-38 
strange attractors, 6 

automata, cellular (see cellular automata) 

B 
Barnsley, Michael, 13, 21, 67, 69, 85, 86, 93, 

100, 101. 106, 108, 121. 126, 129, 130-131. 
137,138 

basin of attraction, boundary scanning 
method (BSM), 38, 39 

behavior patterns, chaos and the mind, 61 
BIFUR.PAS program, 8 

bifurcation diagram, 7 
companion-disk program, 142 
Pascal source code, companion-disk, 142 · 
program listing, 82-84 

bifurcation diagram (see also BIFUR.P AS 
program; PRICE.PAS program), 6-8, 7 

economic systems simulation, 70, 123-124 
neuron growth patterns, 59-60 

Boolean logic, 72 
boundary scanning method (BSM) 
basin of attraction, 38, 39 
Julia sets, 29, 38 

basin of attraction, 38, 39 
Mandelbrot sets, 38 

basin of attraction, 38, 39 
bronchial growth patterns: human body, 

chaos, and fractals, 59, 60 

C 
Cantor sets (see also CANTOR.PAS 

program), 17-18 
fractal dimension, 19-20 
middle third argument, 17 

CANTOR.PAS program, 17-18 
companion-disk program, 142 
Pascal source code, companion-disk, 143 
program listing, 84 

Cantor, Georg, 17 
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CARPET.PAS program, 14 
companion-disk program, 142 
Pascal source code, companion-disk, 143 
program listing, 85-86 

CASTLE.PAS program, 64-65 
companion-disk program, 142 
graphics output, 64 
IFS codes, 65 
Pascal source code, companion-disk, 143 
program listing, 86-87 

CELLl.PAS program (one-dimensional 
cellular automata), 71-74 

Boolean logic in program, 72 
companion-disk program, 142 
Pascal source code, companion-disk, 143 
program listing, 87-89 

CELL2.PAS program (self-organizing cellular 
automata), 73-74 

companion-disk program, 142 
graphics output, 75 
Pascal source code, companion-disk, 143 
program listing, 89-91 

cellular automata, 20, 71-76 
Boolean logic, 72 
CELLlPASprogram, 71-74, 87-89 
CELL2.PAS program, 73-74, 89-91 
LIFE.PAS program, 74-76 
one-dimensional, 71-74 
self-organizing, CELL2.PAS, 89-91 
two-dimensional , 7 4-76 
von Neumann machines, 71 
Wolfram classifications, 71 

chaos, 1 
definition of chaos, 2-3 
fractals and chaos, 20-21 
history of chaotic theory, 21 
human mind and chaos, 61 
infinite roller-coaster concept, 1. 2 
nature and chaos (see natural chaos and 

fractals) 
population dynamics, 41-45 
sensitive dependencies, 2 
simulating chaos (see simulations) 
stable vs. unstable systems, 1 

chrysanthemum (see FLOWER2.PAS 
program) 

CLOUD.PAS program, 53-54 
companion-disk program, 142 
graphics output, 54 
Pascal source code, companion-disk, 143 
program listing, 91-93 

CLOUDS2.PAS program (three-dimensional 
clouds), 54 

companion-disk program, 142 
graphics output, 55 
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CLOUDS2.PAS program (three­
dimensional clouds), (cont.) 

IFS codes, 54 
Pascal source code, companion-disk, 

143 
program listing, 93-96 

coastlines 
natural chaos and fractals, 57-58 
self-similarity, 3 

collage theorem, 67 
companion disk contents, 141-143 
directory creation and use, x 
errors, x 
modifying programs on disk, x-xi 
use of programs on disk, ix-x 

complex numbers and functions, 23-38 
addition, 25-26 
arithmetic with complex numbers, 24-

27 
attractor sensitivity, 30 
attractors of complex numbers 
Julia sets, 29-35 
Mandelbrot sets, 35-38 

COMPLEX.PAS program, 25 
cosine, hyperbolic cosine, 27-29 
division, 26-27 
Euler's equation, 28-29 
exponentials, 28-29 
imaginary part, 24 
kinematics, 40 
modulus, 29-30 
multiplication, 26 
noncomrnutative algebra, 39 
plotting complex numbers, complex 

plane, 24, 25 
real part, 24 
sine, hyperbolic sine, 27-29 
subtraction, 25-26 
three-dimensional fractals, 39-40 
quaternions, 39-40 

variables, complex variables, 24 
complex plane, 24, 25 
COMPLEX.PAS program, 25 
composition, function composition, 5 
compression ratio, image compression, 

66-69 
continuous simulation, 42 
Conway, John, 74 
coordinates 
display-screen mapping, 77-79, 78 
maximum x- and y-coordinates, code, 

80 
cosines 
hyperbolic, complex numbers, 27-28 
JULIA1.PAS program, 30-31, 109-110 
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cross-fractals, 58 
FALL.PAS program, 56-57, 100-101 
IFS codes, 57 

D 
DeAngelis, 59, 61 
DENDRITE.PAS program, 60 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 96-97 

dependencies, sensitive dependencies 
and chaos, 2 

differential equations, 42 
dimension (see fractal dimension) 
discrete simulations, 42 
display screens (see monitors; Turbo 

Pascal graphics) 
division, complex numbers, 26-27 
Douady's Rabbit 

RABBIT.PAS program, from Julia set, 
32, 33, 124-126 

DRAGON.PAS program, 32, 34 
companion-disk program, 142 
graphics output, 34 
Pascal source code, companion-disk, 

143 
program listing, 97-98 

dynamical systems, 4 

E 
economic systems simulation (see also 

PRICE.PAS), 69-71 
bifurcation diagram, 70 
logistics, 70 

EKG.PAS program, 60 
companion-disk program, 142 
graphics output, 61 
Pascal source code, companion-disk, 

143 
program listing, 99-100 

enhanced graphics adapter (EGA) 
monitors.graphics, 77 

equilibrium, stable vs. unstable systems, 
1 

escaping orbits calculations 
Julia sets, 29, 38 
Mandelbrot sets, 38 

escaping points, 5-6 
Escher, M.C., recursive generation in 

the visual-arts, 16-17 
Euler's equation, 28-29 
exponential notation, 5 

complex numbers, 28-29 
Euler's equation, 28-29 

F 
FALL.PAS cross-fractal program, 56-57 
companion-disk program, 142 
cross-fractals, 58 
graphics output, 57 
IFS codes, 57 
Pascal source code, companion-disk, 

143 
program listing, 100-101 

FERN.PAS program, 47 
companion-disk program, 142 
graphics output, 48 
IFS transformation rules, 47 
Pascal source code, companion-disk, 

143 
program listing, 101-102 

FIB.PAS program, 16 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 103 

Fibonacci numbers (see also FIB.PAS), 
15-16 

FLOWER1.PAS (rose) program, 52 
companion-disk program, 142 
graphics output, 52 
Pascal source code, companion-disk, 

143 
program listing, 103-104 

FLOWER2.PAS (chrysanthemum) 
program, 52 

companion-disk program, 142 
graphics output, 53 
Pascal source code, companion-disk, 

143 
program listing, 104-106 

FOREST.PAS program (see also 
REDMOSCL.PAS), 49-50, 67 

companion-disk program, 142 
Pascal source code, companion-disk, 143 
program listing, 106-107 

fractal dimension, 18-20 
fractals, 1 

affine transformations, 12-14 
algorithms for fractals, 4-5 
attractor points, 6 
bifurcation diagrams, 6-8, 7 
Cantor sets, 17-18 
cellular automata study, 20 
chaos and fractals, 20-21 
complex numbers and functions, 23-38 
creating fractals, 4-8 
cross-fractals, 56-57 
definition of fractals, 3-4 
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dynamical systems, 4 
escaping points, 5-6 
exponential notation used in functions, 

5 
Fibonacci numbers, 15-16 
fractal dimension, 18-20 
function composition, 5 
function iteration, 5 
generation program, FRACTINT 

program, xi 
history of fractal geometry, 21 
image compression, 66-69 
indifferent points, 6 
iterated function systems (IFS) (see 

also IFS algorithm), 9 
matrices, 12 
nature and fractals (see natural chaos 

and fractals) 
population dynamics, 41-45 
recursive generation, 14-18 

Cantor sets, 17-18 
Fibonacci numbers, 15-16 

rotating operations, 12 
self-similarity, 3-4, 3 
Sierpinski triangle, 9-12, 9 
simulation fractals (see simulations) 
sliding operations, 12 
strange attractors, 6 
stretching operations, 12 
three-dimensional fractals, 39-40 

Fractals Everywhere, 13 
FRACTINT program, xi 
functions 
bifurcation diagrams, 6-8, 7 
complex numbers and functions, 23-38 
composition, 5 
iteration, 5 

attractor points, 6 
escaping points, 5 
indifferent points, 6 
strange attractors, 6 

G 
GALAX1.PAS program, 57 
companion-disk program, 142 
graphics output, 58 
Pascal source code, companion-disk, 

143 
program listing, 108-109 

Game of Life (see also LIFE.PAS; 
LIFE2PAS), 74-76 

genetics,46 
Gleick, James, 21 
graphics for programs (see monitors; 

Turbo Pascal graphics) 
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H 
Heisenberg uncertainty theory, 47 
human body, chaos and fractals , 58-61 

behavior patterns, 61 
bronchial growth patterns, 59, 60 
EKG.PAS program, 60 
human mind and chaos, 61 
neuron growth patterns, 59-60 
physiological processes, 60 

hyperbolic cosine, complex numbers, 
27-29 

hyperbolic sine, complex numbers, 27-29 

I 
IFS algorithm (see iterated function 

system (IFS)) 
image compression, 66-69 

collage theorem, 67 
IFS algorithm, 67-69 

imaginary part of complex numbers, 24 
indifferent points, 6 
inverse iteration method (IIM) 

Julia sets, 29, 38 
Mandelbrot sets, 38 

iterated function system (IFS) algorithm, 
9 

affine transformations, 12-14 
CASTLE.PAS program, 64-65, 86-87 
CLOUDS2.PAS program, 54, 93-96 
collage theorem, 67 
FALL.PAS program, 56-57, 100-101 
FERN.PAS program, 47, 101-102 
FOREST.PAS program, 49-50, 106-107 
GALAXl.PAS program, program 

listing, 108-109 
image compression, compression 

ratios , 67 
matrices, 12 
MAZEl.PAS program, 65-66, 121-122 
random orbits, 10 
REDMOSCLPAS program, 126-129 
ROCK.PAS program, program listing, 

129-130 
SEAL.PAS program, 130-131 
SEAWEED.PAS program, 50, 131-132 
SIERP.PAS program, 85-86 
Sierpinski triangle, 9-12, 9 
SWAMP.PAS program, 67, 137-138 
TREE.PAS program, 47, 138-139 

iteration 
attracting points, 6 
attractor sensitivity, 30 
bifurcation diagrams, 6-8, 7 
escaping points, 5-6 

function iteration, 5 
indifferent points, 6 
inverse iteration method (IIM), 29, 38 
limits, Julia and Mandelbrot sets, 80 
strange attractors, 6 

J 
Julia sets, 29-35, 31 

AMOEBAPAS, graphics output, 46, 
81-82 

attractor sensitivity, 30 
boundary scanning method (BSM), 29, 

38 
basin of attraction, 38, 39 

CLOUD.PAS program listing, 91-93 
cosines, JULIAl.PAS program, 30-31, 

31, 32, 109-110 
DENDRITE.PAS program, 60, 96-97 
DRAGON.PAS program, 32, 34, 34, 97-

98 
Duoady's rabbit, RABBIT.PAS 

program,32, 33, 124-126 
EKG.PAS program, 60, 99-100 
escaping orbits calculations, 29, 38 
FLOWERl.PAS (rose) program, 52, 103-

104 
FLOWER2.PAS (chrysanthemum) 

program, 52, 104-106 
generation functions , 79 
image compression, 69 
inverse iteration method (IIM) , 29, 38 
iteration limits, 80 
JULIAl.PAS (cosines) program, 30-31 , 

31 , 32, 109-110 
JULIA2.PAS (sine) program, 34-35, 35, 

110-111 
RABBIT.PAS program, Douady's 

rabbit, 32, 33, 124-126 
Siegel disk, SIEGEL.PAS program, 32, 

33, 132-133 
sines, JULIA2.PAS program, 34-35, 35, 

110-111 
SNOWPAS program, 56, 135-137 

Julia, Gaston, 21 
JULIA1 .PAS (cosine) program, 30-31, 69 

companion-disk program, 142 
graphics output, 31 
Pascal source code, companion-disk, 143 
plotting window, 32 
program listing, 109-110 

JULIA2.PAS (sine) program, 34-35, 35 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 110-111 
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K 
kinematics, 40 

L 
LIFE.PAS program 

companion-disk program, 142 
graphics output, 73 
Pascal source code, companion-disk, 143 
programlisting, 112-115 

LIFE2.PAS program 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 115-118 

logistics, 70 
Lorenz, Edward, 21, 46 

M 
MANDEL.PAS program, 36 

companion-disk program, 142 
Pascal source code, companion-disk, 

143 
plotting window, 32 
program listing, 118-119 

MANDEL2.PAS program, 37-38 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 119-121 

Mandelbrot sets (see also 
MANDEL.PAS; MANDEL2PAS), 4, 
35-38, 36-37 

boundary scanning method (BSM), 38 
basin of attraction, 38, 39 

economic systems simulation 
(PRICE.PAS), 69-71 

escaping orbits calculations, 38 
filled Mandelbrot set (MANDEL.PAS), 

36, 118-119 
generation functions, 79 
inverse iteration method (!IM), 38 
iteration limits, 80 
MANDEL.PAS program (see 

MANDELPAS) 
MANDEL2.PAS program (see 

MANDEL2.PAS) 
PRICE.PAS program, 69-71 
self-similarity displayed in Mandelbrot 

set, 4 
unfilled Mandelbrot set 

(MANDEL2.PAS), 37, 119-121 
Mandelbrot, Benoit, 4, 21, 35, 69 
mapping a display screen: coordinates, 

77-79, 78 
matrix-matrices, 12 
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MAZE1.PAS program, 65 
companion-disk program, 142 
graphics output, 65 
IFS codes, 66 
Pascal source code, companion-disk, 

143 
program listing, 121-122 

middle third argument, Cantor sets, 17 
Milton, John, opening quotation, 41, 63 
mind, human mind and chaos, 61 
modulus, complex numbers, 29-30 
monitors (see also Turbo Pascal 

graphics) 
aspect ratio, 78 
clipping of display, 78-79 
color availability, code, 80 
color use, 77, 80 
distortion of display, 78-79 
EGA vs. VGA, for graphics, 77 
mapping the display screen: 

coordinates, 77-79, 78 
Super VGA, 77 
type of monitor, code, 79-80 

multiplication, complex numbers, 26 

N 
natural chaos and fractals, 41-61 
AMOEBA.PAS program, 46 
animal images, 45 
behavior patterns, 61 
bronchial growth patterns, 59, 60 
CLOUD.PAS program, 53-54 
CLOUDS2.PAS program, 54 
coastlines, 57-58 
DENDRITE.PAS program, 60 
EKG.PAS program, 60 
FERN.PAS program, 47 
FLOWER1.PAS (rose) program, 52 
FLOWER2.PAS (chrysanthemum) 

program, 52 
FOREST.PAS program, 49-50 
GALAX1.PAS program, 57 
genetics, 46 
Heisenberg Uncertainty theory, 47 
human body, 58-61 
human mind, 61 
neuron growth patterns, 59-60 
physiological processes, 60 
population dynamics, 41-45 
PREY.PAS program, 41-45 
REDMOSCL.PAS program, 50 
ROCK.PAS program, 54 
scenes from nature, 47-58 
SEALS.PAS program, 45 
SEAWEED.PAS program, 50 

snow FALL.PAS program, 56-57 
SNOW.PAS program, 56 
TREE.PAS program, 47 
weather systems, 46-47 

neuron growth patterns: human body, 
chaos, and fractals, 59-60 

noncommutative algebra, 39 

0 
orbits, random (see random orbits) 

p 
physiological processes, fractal 

mapping, 60 

pixels, graphic picture elements, 77 
plane, complex plane, 24, 25 
Pope, Alexander , opening quotation, 23 
population dynamics, 41-45 

continuous simulation, 42 
differential equations, 42 

Lotus 1-2-3 worksheet, WOLVES.WK3, 
42, 143 

PREY.PAS program, 41-45, 122-123 

PREY.PAS program, 41-45 

companion-disk program, 142 
graphics output, 43, 44 

Lotus 1-2-3 worksheet file, 42, 143 
Pascal source code, companion-disk, 

143 
program listing, 122-123 

PRICE.PAS program, 69-71 
companion-disk program, 142 

Pascal source code, companion-disk, 143 
program listing, 123-124 

program listings, 81-139 
AMOEBA.PAS program from Julia set, 

81-82 

BIFURPAS program for bifurcation 
diagram, 82-84 

CANTORPAS program, 84 

CASTLE.PAS, 86-87 
CELL1PAS, 87-89 

CELL2.PAS, 89-91 
CLOUD.PAS program from Julia set, 

91-93 

CLOUDS2.PAS program from IFS 
algorithm, 93-96 

DENDRITE.PAS from Julia set, 96-97 
DRAGON.PAS program from Julia set, 

97-98 

EKG.PAS program from Julia set, 99-100 
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FALL.PAS cross-fractal program, 100-

101 
FERN.PAS from IFS algorithm, 101-102 

FIB.PAS Fibonacci number program, 103 
FLOWERl.PAS (rose) from Julia set, 

103-104 
FLOWER2.PAS {chrysanthemum) from 

Julia set, 104-106 
FOREST.PAS from IFS algorithm, 106-

107 
GALAXl.PAS space view from IFS 

algorithm, 108-109 
JULIA 1 cosine program, 109-110 
JULIA2 sine program, 110-111 
LIFE.PAS program, Game of Life 

simulation, 112-115 
LIFE2.PAS program, Game of Life 

simulation, 115-118 
MANDEL.PAS program, filled 

Mandelbrot set, 118-119 
MANDEL2.PAS program, unfilled 

Mandelbrot set, 119-121 
MAZEl.PAS program from IFS 

algorithm, 121-122 
PREY.PAS program, wolf-caribou 

populations, 122-123 
PRICE.PAS program, bifurcation 

diagram of economy, 123-124 
RABBIT.PAS program, Douady's rabbit 

from Julia set, 124-126 
REDMOSCL.PAS program from IFS 

algorithm, 126-129 
ROCKS.PAS program from cloud 

fractal-IFS algorithm, 129-130 
SEAL.PAS program from IFS algorithm, 

130-131 
SEAWEED.PAS program from IFS 

algorithm, 131-132 
SIEGEL.PAS program, Siegel disk from 

Julia set, 132-133 
SIERP.PAS program, Sierpinski 

triangle, 133-134 
SIERP2.PAS program, Sierpinski 

triangle, 134-135 
SNOW.PAS program from Julia set, 

135-137 
SWAMP.PAS program from IFS 

algorithm, 137-138 
TREE.PAS program from IFS algorithm, 

138-139 

a 
quaternions, 39-40 
kinematics, 40 
noncommutative algebra, 39 

*Boldface page numbers refer to art 

R 
RABBIT.PAS program, 32 

companion-disk program, 142 
graphics output, 33 
Pascal source code, companion-disk, 

143 
program listing, 124-126 

random orbits, 10 
real part of complex numbers, 24 
recursive generation, 14-18 

Cantor sets, 17-18 
CANTOR.PAS program, 84 
Fibonacci numbers, 15-16 
visual-arts use, Escher's illustrations, 

16-17 
REDMOSCL.PAS program, 50 

companion-disk program, 142 
graphics output, 51 
Pascal source code, companion-disk, 

143 
program listing, 126-129 

repelling points (see escaping points) 
resolution of display screen, graphics, 

77 
ROCK.PAS program, 54 

companion-disk program, 142 
graphics output, 55 
Pascal source code, companion-disk, 

143 
program listing, 129-130 

rose (seeFLOWERl.PAS) 
rotating operations, 12 

s 
scale factors, code, 80 
scaling,69 
scene analysis, simulations, 66 
SEALS.PAS program, 45 

companion-disk program, 142 
graphics output, 45 
Pascal source code, companion-disk, 

143 
program listing, 130-131 

SEAWEED.PAS program, 50 
companion-disk program, 142 
graphics output, 51 
IFS transformation rules, 50 
Pascal source code, companion-disk, 

143 
program listing, 131-132 

self-similarity, 3-4, 3-4 
Siegel disks (see SIEGEL.PAS) 
SIEGEL.PAS program, 32 

companion-disk program, 142 
graphics output, 33 

Pascal source code, companion-disk, 
143 

program listing, 132-133 
SIERP.PAS program, 10-11 

companion-disk program, 142 
IFS {affine) transformations, 12-14, 12 
Pascal source code, companion-disk, 

143 
program listing, 133-134 

SIERP2.PAS program, 13 
companion-disk program, 142 
Pascal source code, companion-disk, 

143 
program listing, 134-135 

Sierpinski carpet (see also 
CARPET.PAS), 12, 15 

fractal dimension, 19-20 
Sierpinski gasket, 12 
Sierpinski triangle (see also SIERP.PAS; 

SIERP2PAS), 9-12, 9, 72 
fractal dimension, 19-20 
LIFE.PAS graphics output, 73 
mapping procedure*, 10-11, 10-1 1 
random orbits, 10 
Sierpinski carpet, 12 
Sierpinski gasket, 12 

simulations 
CASTLE.PAS program, 64-65 
cellular automata, 71-76 
computer scene analysis, 66 
continuous simulations, 42 
discrete simulations, 42 
economic systems, 69-71 
Game of Life, LIFE.PAS, 74-76 
image compression, 66-69 
logistics, 70 
MAZEl.PAS program, 65 
PRICE.PAS program, 69-71 
structures and buildings, 64-66 
SWAMP.PAS program, 67 
turbulent flow, 63-64 

sines 
hyperbolic, complex numbers, 27-29, 

27 
JULIA2P AS, 34-35, 35, 110-111 

sliding operations, 12 
SNOW.PAS program, 56 

companion-disk program, 142 
graphics output, 56 
Pascal source code, companion-disk, 

143 
program listing, 135-137 

stable equilibrium systems, 1 
strange attractors , 6 
stretching operations, 12 



subtraction, complex numbers, 25-26 
Super VGA monitors, graphics, 77 
SWAMPPAS program, 67 

companion-disk program, 142 
graphics output, 68 
IFS codes, 69 
Pascal source code, companion-disk, 

143 
program listing, 137-138 

T 
three-dimensional fractals, 39-40 

CLOUDS2 PAS program, 54 
kinematics, 40 
noncommutative algebra, 39 
quaternions, 39-40 

transformations, affine transformations, 
12-14 

TREE.PAS program, 47 
companion-disk program, 142 

Iii 9ndex 

graphics output, 49 
IFS transformation rules, 47 
Pascal source code, companion-disk, 

143 
program listing, 138-139 

Turbo Pascal graphics (see also 
monitors), 77-80 

aspect ratio, 78 
clipping of display, 78-79 
code for program graphics, 79-80 
color availability, code, 80 
coloruse, 77, 80 
distortion of display, 78-79 
mapping the display screen: 

coordinates, 77-79, 78 
maximum x- and y-coordinates, code, 

80 
monitors, Super VGA, 77-80 
pixels or picture elements, 77 
resolution of screen, 77 

scale factors, code, 79, 80 
turbulent flow simulation, 63-64 

u 
uncertainty, Heisenberg uncertainty 

theory, 47 
unstable equilibrium systems, 1 

V 
variables, complex variables, 24 
Verhulst, P.F., 70 
video graphics adapter (VGA) monitors, 

graphics, 77 
von Neumann, John, 21, 71 

w 
weather system simulations, 46-47 
wolf-caribou population simulation, 

PREY PAS program, 122-123 
Wolfram, Steven, 71 
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